59 research outputs found

    Natural killer cells in placentation and cancer: Implications for hypertension during pregnancy

    Get PDF
    Hypertension during pregnancy is the most common medical condition encountered during gestation. Despite this, knowledge of the mechanisms that underlie the disease and the development of new therapies are limited. Hypertension during pregnancy and some forms of cancer confer an increased risk to the development of cardiovascular disease later in life; one mechanism which may link these conditions is the involvement of natural killer (NK) cells. Whilst immunology and immunotherapy are well-developed areas in oncology; the complex mechanisms of the immune system in health and disease at the maternal-fetal interface are less well-defined. Natural killer (NK) cells have emerged as key immune cells involved in physiology and pathology of pregnancy. These small lymphocytes are present in the decidua (the uterine-specific uNK cells) and are distinct from peripheral NK cells. The uNK cell population plays a vital role in mediating trophoblast invasion and affecting decidual vascular remodelling whereas the role of the peripheral NK cell population during pregnancy is less well-defined. This review will give an overview of NK cell biology followed by a discussion of the current evidence for the role of uterine and peripheral NK cells at the maternal-fetal interface in health and disease. Furthermore, examples of NK cell research from cancer biology will be employed to inform future directions of research. By combining this knowledge from oncology where the field of immunotherapy has now matured into clinical trials; it is hopeful that new mechanisms can be elucidated to generate targets for similar therapeutic strategies for women with hypertensive pregnancies where interventions are needed

    Much Ado about N...atrium: modelling tissuesodium as a highly sensitive marker of subclinicaland localized oedema

    Get PDF
    Hypertonic Na+ accumulation in peripheral tissues is a recently described phenomenon: it has been associated with ageing, hypertension, diabetes, chronic kidney disease and heart failure, but its clinical meaning has yet to be determined. This concept conflicts with the classic physiological paradigm of constant balance between salt intake and excretion, and its water-independent nature is still a matter of debate. We developed a theoretical model explaining changes in the chemical composition of tissues as a function of extracellular volume fraction and excess extracellular fluid, i.e. oedema. The model suggests that the proportional increase in absolute Na+ content and concentration due to different degrees of oedema is higher than the parallel increase in water content, thus making Na+ a more sensitive index to detect this oedema. Our model would explain some of the recent findings of high tissue Na+ content in pathological conditions. More importantly, it prompts the reappraisal of tissue Na+ analysis from being a topic of niche interest to a potential diagnostic tool with broad applicability in the investigation of subclinical systemic and localized oedema

    Vasoreactivity in CADASIL: comparison to structural MRI and neuropsychology

    Get PDF
    Impaired cerebrovascular reactivity precedes histological and clinical evidence of CADASIL in animal models. We aimed to more fully characterise peripheral and cerebral vascular function and reactivity in a cohort of adult CADASIL patients, and explore the associations of these with conventional clinical, imaging and neuropsychological measures. 22 adults with CADASIL gave informed consent to participate in an exploratorystudy of vascular function in CADASIL. Clinical assessment, comprehensive vascular assessment, MRI and neuropsychological testing were conducted. Transcranial Doppler and arterial spin labelling MRI with hypercapnia challenge both measured cerebral vasoreactivity. Number and volume of lacunes, subcortical hyperintensity volume, microbleeds and normalised brain volume were assessed on MRI scans. Analysis was exploratory and examined associations between different markers. The results showed that cerebrovascular reactivity measured by ASL correlated with peripheral vasoreactivity measured by flow mediated dilatation. Subjects with >5 lacunes were older, with evidence of atherosclerosis and had impaired cerebral and peripheral vasoreactivity. Subjects with depressive symptoms, disability or delayed processing speed, also had impaired vasoreactivity, as well as more lacunes and brain atrophy. Impaired vasoreactivity and vascular dysfunction may play a significant role in the pathophysiology of CADASIL and vascular tests may be important to include in both longitudinal and clinical trials

    Integrase-deficient lentiviral vectors mediate efficient gene transfer to human vascular smooth muscle cells with minimal genotoxic risk

    Get PDF
    We have previously shown that injury-induced neointima formation was rescued by adenoviral-Nogo-B gene delivery. Integrase-competent lentiviral vectors (ICLV) are efficient at gene delivery to vascular cells but present a risk of insertional mutagenesis. Conversely, integrase-deficient lentiviral vectors (IDLV) offer additional benefits through reduced mutagenesis risk, but this has not been evaluated in the context of vascular gene transfer. Here, we have investigated the performance and genetic safety of both counterparts in primary human vascular smooth muscle cells (VSMC) and compared gene transfer efficiency and assessed the genotoxic potential of ICLVs and IDLVs based on their integration frequency and insertional profile in the human genome. Expression of enhanced green fluorescent protein (eGFP) mediated by IDLVs (IDLV-eGFP) demonstrated efficient transgene expression in VSMCs. IDLV gene transfer of Nogo-B mediated efficient overexpression of Nogo-B in VSMCs, leading to phenotypic effects on VSMC migration and proliferation, similar to its ICLV version and unlike its eGFP control and uninfected VSMCs. Large-scale integration site analyses in VSMCs indicated that IDLV-mediated gene transfer gave rise to a very low frequency of genomic integration compared to ICLVs, revealing a close-to-random genomic distribution in VSMCs. This study demonstrates for the first time the potential of IDLVs for safe and efficient vascular gene transfer

    Sex steroids receptors, hypertension and vascular ageing

    Get PDF
    Sex hormone receptors are expressed throughout the vasculature and play an important role in the modulation of blood pressure in health and disease. The functions of these receptors may be important in the understanding of sexual dimorphism observed in the pathophysiology of both hypertension and vascular ageing. The interconnectivity of these factors can be exemplified in postmenopausal females, who with age and estrogen deprivation, surpass males with regard to hypertension prevalence, despite experiencing significantly less disease burden in their estrogen replete youth. Estrogen and androgen receptors mediate their actions via direct genomic effects or rapid non-genomic signaling, involving a host of mediators. The expression and subtype composition of these receptors changes through the lifespan in response to age, disease and hormonal exposure. These factors may promote sex steroid receptor-mediated alterations to the Renin–Angiotensin–Aldosterone System (RAAS), and increases in oxidative stress and inflammation, thereby contributing to the development of hypertension and vascular injury with age

    Effect of mineralocorticoid receptor antagonists on proteinuria and progression of chronic kidney disease: a systematic review and meta-analysis

    Get PDF
    Background: Hypertension and proteinuria are critically involved in the progression of chronic kidney disease. Despite treatment with renin angiotensin system inhibition, kidney function declines in many patients. Aldosterone excess is a risk factor for progression of kidney disease. Hyperkalaemia is a concern with the use of mineralocorticoid receptor antagonists. We aimed to determine whether the renal protective benefits of mineralocorticoid antagonists outweigh the risk of hyperkalaemia associated with this treatment in patients with chronic kidney disease. Methods: We conducted a meta-analysis investigating renoprotective effects and risk of hyperkalaemia in trials of mineralocorticoid receptor antagonists in chronic kidney disease. Trials were identified from MEDLINE (1966–2014), EMBASE (1947–2014) and the Cochrane Clinical Trials Database. Unpublished summary data were obtained from investigators. We included randomised controlled trials, and the first period of randomised cross over trials lasting ≥4 weeks in adults. Results: Nineteen trials (21 study groups, 1 646 patients) were included. In random effects meta-analysis, addition of mineralocorticoid receptor antagonists to renin angiotensin system inhibition resulted in a reduction from baseline in systolic blood pressure (−5.7 [−9.0, −2.3] mmHg), diastolic blood pressure (−1.7 [−3.4, −0.1] mmHg) and glomerular filtration rate (−3.2 [−5.4, −1.0] mL/min/1.73 m2). Mineralocorticoid receptor antagonism reduced weighted mean protein/albumin excretion by 38.7 % but with a threefold higher relative risk of withdrawing from the trial due to hyperkalaemia (3.21, [1.19, 8.71]). Death, cardiovascular events and hard renal end points were not reported in sufficient numbers to analyse. Conclusions: Mineralocorticoid receptor antagonism reduces blood pressure and urinary protein/albumin excretion with a quantifiable risk of hyperkalaemia above predefined study upper limit

    Vascular phenotypes in early hypertension

    Get PDF
    The study characterises vascular phenotypes of hypertensive patients utilising machine learning approaches. Newly diagnosed and treatment-naïve primary hypertensive patients without co-morbidities (aged 18–55, n = 73), and matched normotensive controls (n = 79) were recruited (NCT04015635). Blood pressure (BP) and BP variability were determined using 24 h ambulatory monitoring. Vascular phenotyping included SphygmoCor® measurement of pulse wave velocity (PWV), pulse wave analysis-derived augmentation index (PWA-AIx), and central BP; EndoPAT™-2000® provided reactive hyperaemia index (LnRHI) and augmentation index adjusted to heart rate of 75bpm. Ultrasound was used to analyse flow mediated dilatation and carotid intima-media thickness (CIMT). In addition to standard statistical methods to compare normotensive and hypertensive groups, machine learning techniques including biclustering explored hypertensive phenotypic subgroups. We report that arterial stiffness (PWV, PWA-AIx, EndoPAT-2000-derived AI@75) and central pressures were greater in incident hypertension than normotension. Endothelial function, percent nocturnal dip, and CIMT did not differ between groups. The vascular phenotype of white-coat hypertension imitated sustained hypertension with elevated arterial stiffness and central pressure; masked hypertension demonstrating values similar to normotension. Machine learning revealed three distinct hypertension clusters, representing ‘arterially stiffened’, ‘vaso-protected’, and ‘non-dipper’ patients. Key clustering features were nocturnal- and central-BP, percent dipping, and arterial stiffness measures. We conclude that untreated patients with primary hypertension demonstrate early arterial stiffening rather than endothelial dysfunction or CIMT alterations. Phenotypic heterogeneity in nocturnal and central BP, percent dipping, and arterial stiffness observed early in the course of disease may have implications for risk stratification

    Tissue sodium excess is not hypertonic and reflects extracellular volume expansion

    Get PDF
    Our understanding of Na+ homeostasis has recently been reshaped by the notion of skin as a depot for Na+ accumulation in multiple cardiovascular diseases and risk factors. The proposed water-independent nature of tissue Na+ could induce local pathogenic changes, but lacks firm demonstration. Here, we show that tissue Na+ excess upon high Na+ intake is a systemic, rather than skin-specific, phenomenon reflecting architectural changes, i.e. a shift in the extracellular-to-intracellular compartments, due to a reduction of the intracellular or accumulation of water-paralleled Na+ in the extracellular space. We also demonstrate that this accumulation is unlikely to justify the observed development of experimental hypertension if it were water-independent. Finally, we show that this isotonic skin Na+ excess, reflecting subclinical oedema, occurs in hypertensive patients and in association with aging. The implications of our findings, questioning previous assumptions but also reinforcing the importance of tissue Na+ excess, are both mechanistic and clinical

    Brain imaging factors associated with progression of subcortical hyperintensities in CADASIL over two year follow up

    Get PDF
    Background: Mutations in the NOTCH3 gene cause CADASIL, a cerebral small vessel disease manifesting with stroke, migraine and dementia in adults. The disease displays significant phenotypic variability which is incompletely explained. Early abnormalities in vascular function have been shown in animal models. We postulated that studying changes in vascular function may offer insights into disease progression. Methods: Twenty two subjects with CADASIL (50% female, 50 (±11) years) from 19 pedigrees were included in a longitudinal multimodality study using brain MRI, clinical measures, neuropsychology, and measures of peripheral vascular function. MRI studies included measurement of structural brain changes, cerebral blood flow (CBF) and cerebrovascular reactivity by arterial spin labelling and a CO2 respiratory challenge. Results: Over two years, new stroke or TIA occurred in 5 (23%) subjects and new significant disability in 1 (5%). There were significant increases in number of lacunes, subcortical hyperintensity volume and microbleeds, and a decrease in brain volume. CBF declined by 3.2 (±4.5) ml/100g/min over two years. CBF and carotid‐femoral pulse wave velocity at baseline predicted change in subcortical hyperintensity volume at follow up. Carotid‐intima‐media thickness and age predicted brain atrophy. Baseline CBF was lower in subjects who showed a decline in attention and working memory. Conclusion: CBF predicts radiological progression of hyperintensities and thus is a potential biomarker of disease progression in CADASIL. Over two years, there were changes in several relevant imaging biomarkers (CBF, brain volume, lacunes, microbleeds, and hyperintensity volume). Future studies in CADASIL should consider assessment of CBF as prognostic factor
    corecore