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Sex hormone receptors are expressed throughout the vasculature and play an important role in the modulation of blood pressure
in health and disease. The functions of these receptors may be important in the understanding of sexual dimorphism observed in
the pathophysiology of both hypertension and vascular ageing. The interconnectivity of these factors can be exemplified in
postmenopausal females, who with age and estrogen deprivation, surpass males with regard to hypertension prevalence, despite
experiencing significantly less disease burden in their estrogen replete youth. Estrogen and androgen receptors mediate their
actions via direct genomic effects or rapid non-genomic signaling, involving a host of mediators. The expression and subtype
composition of these receptors changes through the lifespan in response to age, disease and hormonal exposure. These factors
may promote sex steroid receptor-mediated alterations to the Renin-Angiotensin—Aldosterone System (RAAS), and increases in
oxidative stress and inflammation, thereby contributing to the development of hypertension and vascular injury with age.
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INTRODUCTION

Hypertension is the leading modifiable risk factor resulting in
cardiovascular disease and mortality worldwide [1]. Ageing is an
important mediator in the development of hypertension and
contributes significantly to the rising prevalence of this condition
[2]. However, the effects of age on blood pressure are not uniform
between sexes. Males experience higher rates of hypertension
compared with females, until the sixth decade of life, where
thereafter this condition is more prevalent in the latter [3].
Therefore, although blood pressure and hypertension rates
increase with age, this interaction is not consistent between
males and females.

Despite this, there are no sex specific recommendations for
treating hypertension in international guidelines [4, 5]. In the
landmark Systolic Blood Pressure Intervention Trial (SPRINT), there
was no evidence of differences in target or treatment choice
between males and females, although this may be a consequence
of being underpowered to detect such differences [6-8]. Females
only comprised approximately 36% of the SPRINT cohort, which is
in keeping with the chronic underrepresentation of this sex in
cardiovascular trials. The exclusion of participants under 50 years
ensured mostly postmenopausal females would have been
recruited and therefore it is uncertain whether pharmacologic
management of hypertension should differ premenopausal
females compared to age-matched males. Importantly, although
antihypertensive medication are generally used more in females,
only 44.8% achieve blood pressure control versus 51.1% of treated
males [9]. As a consequence, the age, sex, and hormonal status of
individuals, which are paramount in the development of
hypertension, are too often ignored to the detriment of
patient care.

Vascular ageing describes the progressive decline in endothelial
function, vascular remodeling, inflammation, and increased
arterial stiffness [10]. Processes responsible for this include

activation of proinflammatory pathways, oxidative stress, cell
senescence, and the instigation of a vascular smooth muscle cell
(VSMQ) proliferative phenotype. These processes are also present
in the development of hypertension and, as a consequence, are
closely related and indeed reciprocal in that vascular ageing may
propagate the pathophysiology of hypertension and vice versa.
Notably, these processes also appear to be modulated by sex.

The means by which sex interacts with blood pressure and
vascular ageing are complex and may result from a multitude of
hormonal, chromosomal, or even psychosocial factors [11].
Sex steroids, and the receptors through which they act, are
emerging as important mediators in the promotion and main-
tenance of sexual divergence in blood pressure regulation across
the lifespan, and the development of vascular injury with age. In
this narrative review we evaluate the relationship between
estrogen and androgen hormone receptors, hypertension, and
vascular ageing.

BLOOD PRESSURE, VASCULAR HEALTH, AND SEX STEROIDS
ACROSS THE LIFESPAN

The blood pressure of males and females are equivalent in
childhood, however, rapidly rise and exhibit sexual dimorphism
during and after puberty, which coincides with the advent of
increased sex hormone secretion and function [12]. The influence
of estrogen on female blood pressure can be observed during the
menstrual cycle, where blood pressure inversely relates to
circulating estrogen levels [13]. Increases in blood pressure are
more evident in males, at least until later in life, resulting in males
having significantly higher blood pressure than age-matched
female counterparts [14]. In a meta-analysis of 23 studies including
3476 non-hypertensive participants, 24-h systolic and diastolic
blood pressure was 6 and 4 mmHg higher in males than females,
respectively [15].
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Hypertension prevalence, sex hormone levels and ageing in males and females. Hypertension Prevalence in US Adults between

2013 and 2016 (NHANES) [17]. Sex hormone estimates throughout the lifespan modified from Ober et al. [78].

However, females do exhibit a sharper incline in blood pressure,
commencing and persisting from their third decade compared to
males [16]. In the United States between 2013 and 2016, the
prevalence of hypertension in females and males per age group in
the National Health and Nutrition Examination Survey (NHANES)
was 13% versus 25.7% (20-34 years), 31.6% versus 42.5% (35-44
years), 49.7% versus 56.3% (45-54 years), and 63.9% versus 66.4%
(55-64 years) [17]. Following this timepoint, which would be
consistent with the onset of the menopause and loss of estrogen,
females consistently demonstrate a higher prevalence of hyper-
tension than males (Fig. 1).

Ageing is associated with reductions in sex hormone levels that
may facilitate alterations in blood pressure regulation and
promote hypertension and vascular ageing. Testosterone declines
by ~1% per year in males over 30 years, while almost a fifth of
males over 60 years of age have testosterone levels below normal
range values for young males [18, 19]. Although not formally
studied in the vasculature, this would be expected to reduce
androgen receptor (AR) expression. In a prospective study of
males over the age of 50, total testosterone was inversely
associated with systolic and diastolic blood pressure and
increased risk of death [20]. Similarly, low testosterone is
associated with increased pulse wave velocity in older hypogo-
nadal males [21]. Interestingly, this was partially reversed with
testosterone supplementation. Data from randomized controlled
trials regarding the impact of testosterone on blood pressure are
lacking, however, in observational studies of older hypogonadal
males, testosterone therapy resulted in decreases in blood
pressure [22, 23].

In females, the acceleration in cardiovascular risk and vascular
dysfunction following the menopause, and reduction in endo-
genous estrogen, suggests that the interaction between age and
estradiol levels may promote vascular vulnerability. However, in a
sub-analysis of the Women's Health Initiative (WHI) study,
conjugated equine estrogen appeared to increase the risk of
developing hypertension in older postmenopausal females, which
decreased following the discontinuation of this treatment [24].
This effect may be limited to this dose or formulation, as in the
Kronos Early Estrogen Prevention Study transdermal or lower
doses of conjugated equine estrogen did not alter blood pressure
[25].

Taken together, these data suggest that sex steroids are
important mediators of blood pressure, however, the effect that
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these hormones elicit may differ according to the stage of life of
an individual.

CARDIOVASCULAR SEX STEROID RECEPTORS

Estrogen receptors

Sex steroid receptors are expressed throughout the vasculature
and sex steroids act through their receptors via genomic and non-
genomic mechanisms. Estrogen receptors (ERs) are expressed in
endothelial and VSMCs and their actions in these tissues that
modulate vascular tone are numeorus [26]. The primary physiolo-
gical estrogen is 17B-estradiol, which mediates direct genomic
signaling, where it binds to cytosolic ER, ERq, and Erf3. These in turn
dimerize and translocate to the nucleus where they bind to
estrogen response elements (ERE). Alternatively, binding may occur
on the activator protein-1 and specificity protein-1, which reside on
the promoter of estrogen responsive genes and may modulate
transcriptional changes [27]. Estrogen can also bind to membrane-
bound ERs (ERa, ERB, and G protein coupled estrogen receptor),
which promote intracellular second messenger signaling, via
MAPK/ERK/PI3K/cAMP, that indirectly modulates gene expression
and facilitates rapid changes that may alter blood pressure such as
increasing NO bioavailability and promoting vasodilatation.

The RAAS plays an important role in the vasculature aberrations
that occur with ageing and hypertension and is also modulated by
sex hormones [10]. Baseline levels of renin, plasma renin activity
and aldosterone are elevated during the luteal phase of the
menstrual cycle, where estrogen levels are high compared to the
follicular phase [28]. Despite humoral activation of RAAS, mean
arterial blood pressure during the luteal phase was not maintained
during orthostatic stress, suggesting that estrogen may down-
regulate tissue responses to RAAS components either through
direct ER signaling or through NO-mediated vasodilatation.

ERa appears to be pivotal in the relationship between estrogen
and RAAS mediators (Table 1). In the juxtaglomerular cells, ERa
directly binds to the ERE in the renin enhancer gene that is
required for basal renin expression [29]. Importantly, angiotensin
(Ang) Il induced hypertension is increased in ovariectomized ERa
knockout female mice, compared with intact wild-type [30]. In
premenopausal females, an ERa mediated increase in Ang-(1-7)
and angiotensin-converting enzyme (ACE) 2 activity promotes a
vasodilatory phenotype [31]. The vasodilatory effect of Ang-(1-7) is
lost in elderly female mice and restored with estrogen
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Table 1. Estrogen receptor subtype mediated effects associated with hypertension and vascular ageing.
Receptor Model Effect
ERo Murine juxtaglomerular cells

Ang Il treated ERa knockout mice

Maintenance of baseline renin expression
Ang Il induced hypertension is increased

Increased systolic blood pressure, ventricular weight and vascular contractility
Increased renal inflammation and oxidative stress in older mice

Ovariectomised rats
Premenopausal human females

ERB ERp deficient mice
Spontaneously hypertensive rats
Human females

replacement [32]. The combination of ageing and estrogen loss in
females may therefore blunt the protective effect of this RAAS
component and promote hypertension.

ERa consists of six domains containing two independent
activation functions, AF-1 and AF-2. Models of ERa inactivation
(ER—/—) and selective inactivation of nuclear ERa actions, through
activating function 2 (AF2°) deletions, or membrane-initiated ERa
actions via point mutations of the palmitoylable Cys451(C451A),
have elucidated pathways by which estrogen elicits its cardiopro-
tective effect [33]. In mice treated with Ang Il, increased systolic
blood pressure, ventricle weight, and vascular contractility were
evident in ERa—/— and AF2° mice compared to either wild-type or
C451A mice. Moreover, renal inflammation and oxidative stress
were increased in old hypertensive ER—/— and AF2° mice,
compared to old hypertensive wild-type and C451A mice.
Therefore, nuclear ERa-AF2, and not extra-nuclear ERa signaling,
appears to play a protective role in Ang-ll dependent hyperten-
sion and target organ damage in ageing mice.

There is also evidence for the role of ERB in the modulation of
blood pressure, however, the mechanisms underpinning these
actions are less clear (Table 1). ERB-deficient mice develop
abnormalities in VSMC ion channel function and age associated
hypertension [34]. Ligand-mediated activation of ERP also
promotes reductions in blood pressure in spontaneously hyper-
tensive rats (SHR) [35]. Interestingly, direct activation of ERP was
found to be more potent than stimulation through the
nonselective use of 17-B estradiol. Moreover, in humans
polymorphisms in ERB have been found to be associated with
salt-sensitive blood pressure and hypertension [36, 371.

Importantly, ER expression and the balance of ER subtypes can
change with ageing and prolonged estrogen deficiency, which in
turn alters responses to estrogen [38]. In a small sample of
postmortem coronary arteries, VSMC ER expression was lower in
postmenopausal versus premenopausal females, while athero-
sclerosis lowered ER expression independent of menopausal state
[39]. Animal studies have demonstrated that endothelial ERa
expression is downregulated and endothelial NO signaling is
impaired following extended periods of estrogen deprivation [40].
This does not recover following the reintroduction of this sex
hormone. In endothelial cells obtained from peripheral veins, ERa
expression fluctuated throughout the menstrual cycle in response
to estrogen, and was reduced in estrogen-deficient postmenopau-
sal females [41]. Age-related methylation of ER promotor regions,
histone deacetylation, and inhibition of membrane localization via
posttranslational modifications may mediate senescence-related
regulation of ERa expression and function [42]. Conversely, in
uterine arteries of postmenopausal females there is a progressive
increase in ERB expression [38]. Consequently, alterations in ER
subtype expression with age and declining estrogen levels, may
mediate a shift in ERa: ERP receptor ratios and promote an adverse
vascular phenotype and contribute to the development of
hypertension and vascular injury.
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ERa downregulation and endothelial NO signaling impaired following estrogen deprivation
Increases in Ang-(1-7) and ACE2 activity

Abnormal VSMC channel function and age associated hypertension

ERp activation reduces blood pressure

ERP polymorphisms are associated with salt-sensitive blood pressure and hypertension

Androgen receptors

Testosterone and its more potent metabolite, dihydrotestosterone
(DHT), are ligands of the AR. Much like the ER, the AR is expressed
in both endothelial and VSMCs. The AR consists of a 110 kDa
protein receptor with three major functional regions for transacti-
vation, a DNA binding domain and a hormone binding domain
[43]. Two AR variants have been discovered, AR-A and AR-B, with
the latter predominating in the most tissues where both receptors
are expressed [44]. The exact role of these receptor subtypes has
yet to be elucidated.

Unbound cytosolic ARs are co-localized with a number of
chaperones, such as heat shock proteins and cytoskeletal
elements [44]. After binding, the receptor undergoes a conforma-
tional change, resulting in a dissociation of these chaperones and
promotes AR dimerization and nuclear translocation, where its
interactions with androgen response elements (ARE) to modulate
genomic responses [45]. Alternatively, non-genomic testosterone
effects are mediated by membrane-bound ARs and act via
multiple pathways including PKA, PKC, and MAPK [46]. Through
these non-genomic pathways, testosterone can stimulate rapid
vasodilatation via endothelium dependent and independent
mechanisms [47]. The former result from increased NO bioavail-
ability via AR-mediated eNOS activation, and the release of
vasodilating factors into the VSMCs.

Testosterone increases renin levels and expression/activity of
ACE and AT1R, while downregulating AT2R, thereby favouring a
vasoconstrictor pathway [48]. In models of hypertension, such as
in New Zealand genetically hypertensive rats, androgens enhance
vascular responsiveness to Ang Il [49]. The interactions between
these factors may therefore be important in the development of
hypertension. Indeed, Ang Il induced vascular contraction appears
dependent on androgen status. Chronic testosterone deficiency
via castration ameliorates Ang Il induced increases in blood
pressure [50]. Conversely, the hypertensive effect of Ang Il is
exaggerated in males with intact testis and castrated males that
received exogenous testosterone replacement. Therefore, testos-
terone may modulate the development and maintenance of Ang |l
induced hypertension and increased vascular contractility to
pressors. Interestingly, testosterone supplements in young non-
hypogonadal male SHR resulted in increases in blood pressure,
which is mediated via RAAS. However, when administered to older
SHRs a decrease in blood pressure was observed [51]. Conse-
quently, both the testosterone status, which may alter AR
expression, and the age of recipient may influence the blood
pressure response to this hormone.

Molecular mechanisms of sex steroid mediated hypertension
and vascular ageing

In addition to direct effects of sex hormones on vasodilation via
the NO system, or indirectly via the RAAS, sex steroids may
modulate a number of mechanisms evident in the development
of both hypertension and vascular ageing.
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OXIDATIVE STRESS

Oxidative stress plays a central role in the development of vascular
ageing in hypertension. In rat coronary arterioles, both age and
loss of circulating estrogens, as a consequence of ovariectomy,
reduce NO bioavailability. Importantly, dilatation of these arter-
ioles are highly dependent on this mechanism. Impairment in
reactive oxygen species (ROS) regulation, especially O,-, appears
to modulate this decrease in NO-mediated dilation as a
consequence of age or estrogen deficiency [52]. Decreases in
Cu/Zn superoxide dismutase expression in both aged and
ovariectomized rats were observed. This was restored following
estrogen replacement in young rats. This phenomenon has also
been observed in mice, where the aortic contractile response to
thromboxane A2 is modulated by the interaction between NO
synthase (NOS) and cyclooxygenase (COX) pathways [53]. This
interaction is dependent again on age and estrogen status and
promoted by COX-mediated generation of superoxide that
decreases NO bioavailability. Of note, increases in the ERB: ERa
ratio that appear to occur with ageing are associated with
increased oxidative stress [54].

The relationship between testosterone and redox status is also
complex. The AR modulates increased expression of a number of
pro-oxidant enzymes such as NAD(P)H oxidases, xanthine oxidases
and COX-2. Furthermore, AR may increase the transcription of genes
related to the c-Src and PI3K/Akt pathways, which also promote ROS
generation [55]. In a rat model of Ang Il induced hypertension, ROS
generation was increased by testosterone, only in hypertensives
through phosphorylation of c-Src, an upstream regulator of NADPH
oxidase [56]. However, these effects appear to be determined by
testosterone status and ageing. In a rat model of ageing and
testosterone deprivation, a decrease in antioxidant haeme oxyge-
nase activity was observed and reversed with testosterone
supplementation [57]. Moreover, testosterone also induces AR-
mediated mitochondrial-associated ROS generation and apoptosis
in VSMCs [58]. Orchiectomized male rats receiving testosterone
replacement demonstrated an improved cardiovascular redox state,
thereby reversing elevations in lipid peroxidation and nitrotyrosine
[59]. In line with this, low testosterone levels are associated with
enhanced oxidative stress and in males with type 2 diabetes and a
mean age of over 50 years [60], however, it is unclear whether
testosterone supplementation is capable of restoring this balance.

INFLAMMATION
Inflammation plays a significant role in both the pathogenesis of
hypertension and cardiovascular ageing. Via the ERs, estrogen has
demonstrated the capacity to reduce the inflammatory response
by negatively modulating proinflammatory mediator expression,
which likely contributes to the cardioprotective role of this sex
hormone [61]. Following balloon injury of the right carotid artery
of ovariectomized rats, estradiol significantly reduced the expres-
sion of adhesion modules (P-selectin, vascular cell adhesion
molecule-1 (VCAM-1), and intercellular adhesion molecule-1
(ICAM-1)), chemoattractants (cytokine-induced neutrophil che-
moattractant 2f3 (CINC-23), monocyte chemoattractant protein 1
(MCP-1)), and proinflammatory cytokines (IL-1 and IL-6).
However, these effects may also be age-dependent. In murine
VSMCs and bone marrow-derived macrophages, the estrogen-
mediated reduction in inflammatory response to C-reactive
protein occurred only in female cells derived from young and
not aged mice [62]. Similarly, in uterine arteries of postmenopau-
sal females, ageing was associated with a switch from an anti-
inflammatory to proinflammatory profile [38]. In particular, an
increased correlation was observed MCP-1 and the adhesion
molecules soluble VCAM-1 and ICAM-1 with ageing. These data
further corroborate the hypothesis of the influence of altered ER
subtype ratio promoting an adverse vascular phenotype, as
increased ERB expression with ageing was observed.
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The immunomodulatory role of androgens, and in particular
testosterone, has long been theorized due to the greater
incidence of immune-mediated diseases in females and androgen
deficient males [63]. Evidence exploring the relationship of
between testosterone, hypertension and vascular ageing is
limited, however, inference from other vascular models pertains
to the immunomodulatory role of the AR in this context. In a
murine inflammatory abdominal aortic aneurysm (AAA) model,
castration promoted AAA formation via the expansion of
inflammatory macrophages and IL-6 and IL-1p upregulation [64].
Conversely, following the administration of testosterone, AAA
formation was found to be inhibited by the amelioration of
macrophage-mediated inflammatory responses. In  human
endothelial cells the AR mediates the downregulation of adhesion
molecules, chemokines and proteases induced by TNFq, following
exposure to DHT [65].

It has been recently demonstrated that testosterone may
provide a protective effect on vascular ageing by improving
vascular remodeling through the Growth arrest-specific protein 6/
Axl pathway, which has been implicated in cell survival, adhesion,
migration and inflammatory cytokine release [66]. These findings
are consistent with the results of a randomized control trial of
testosterone replacement in older hypogonadal males, where
testosterone was found to reduce TNFaq, IL-1 and increase IL-10,
thereby promoting an anti-inflammatory state [67].

Beyond the vasculature

Beyond the evidence provided in this review, sex hormones may
play a wider role in blood pressure regulation through central
nervous system, renal involvement and effects on cardiac output
and temporal peripheral resistance. For instance, ERs are
expressed in the subfornical organ, the paraventricular nucleus
and the rostral ventral lateral medulla [68]. These are key regions
that regulate sympathetic nerve activity (SNA), which when
increased has been implicated as a primary precursor of
hypertension. Young premenopausal females have been shown
to have lower SNA, than do males of the same age, whereas
postmenopausal females have resting muscle SNA that is similar
to those of age-matched males [69, 70]. In postmenopausal
females long term transdermal estrogen administration decreased
SNA and was associated with significant reduction in 24-h
ambulatory BP [71, 72]. Similarly, ARs are widely expressed in
the central nervous system, however, their role, or indeed the
influence of fluctuating sex steroid receptor expression, in the
central nervous system in modulating SNA is unclear. Ultimately, a
multi-system approach will be required to develop a comprehen-
sive understanding of the role of these receptors in the
development of hypertension, and how their age-related plasticity
may modulate this relationship.

Sex-dependent hormonal action

Another factor that must be considered is the sex-dependent role
of vascular androgen and ERs. For instance, it has been
demonstrated that raised free androgen index (i.e. the ratio of
circulating testosterone to sex hormone binding globulin) in
postmenopausal females is associated with hypertension and
vascular ageing [73]. Therefore, although one system of sex
steroid receptor may predominate in a particular sex, both are
likely to be of physiological significance, particularly if the other is
perturbed. However, the definitive role of ARs in females and ERs
in males with respect to the development of hypertension and
vascular ageing has not yet been ellucidated [47, 74].

This putative interaction may be of particular importance to the
long-term vascular health of transgender individuals receiving
gender-affirming hormonal therapy. There is currently insufficient
data to advise the impact of sex steroids on blood pressure in this
population, however, some studies suggest a higher rate of
hypertension [75, 76]. It remains unclear to what effect the
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administration of physiological concentrations of estrogen or
testosterone has in natal males and females, respectively, on sex
steroid receptor expression or function. This has the added
complexity that unless doses of these hormones are adjusted, age-
relative supraphysiological levels will be achieved in older
individuals, and the long-term vascular sequelae of this is
uncertain [77].

CONCLUSIONS

Mechanisms whereby sex steroid receptors mediate shared
processes in both hypertension and vascular ageing are becoming
evident. A common theme in the evidence provided is that both
the sex hormone status of an individual and their physiological
age are important determinants of their response to sex steroid
administration. Estrogen, despite eliciting a number of cardiopro-
tective effects in females in youth, may facilitate vascular injury
later in life following periods of deprivation. The plasticity of
receptor subtype expression in ageing estrogen-deficient females
appears to be of particular importance in this population.
Conversely, the increased cardiovascular risk in males elicited by
testosterone rises further through the relative hypogonadism and
age, and is potentially rescued through subsequent re-exposure. It
is clear that much work is required to understand the mechanisms
by which sex steroid receptors modulate the development of
hypertension and vascular ageing, and how these relationships
can be exploited to prevent such conditions.
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