8 research outputs found

    Disease-Toxicant Interactions in Manganese Exposed Huntington Disease Mice: Early Changes in Striatal Neuron Morphology and Dopamine Metabolism

    Get PDF
    YAC128 Huntington's disease (HD) transgenic mice accumulate less manganese (Mn) in the striatum relative to wild-type (WT) littermates. We hypothesized that Mn and mutant Huntingtin (HTT) would exhibit gene-environment interactions at the level of neurochemistry and neuronal morphology. Twelve-week-old WT and YAC128 mice were exposed to MnCl2-4H2O (50 mg/kg) on days 0, 3 and 6. Striatal medium spiny neuron (MSN) morphology, as well as levels of dopamine (DA) and its metabolites (which are known to be sensitive to Mn-exposure), were analyzed at 13 weeks (7 days from initial exposure) and 16 weeks (28 days from initial exposure). No genotype-dependent differences in MSN morphology were apparent at 13 weeks. But at 16 weeks, a genotype effect was observed in YAC128 mice, manifested by an absence of the wild-type age-dependent increase in dendritic length and branching complexity. In addition, genotype-exposure interaction effects were observed for dendritic complexity measures as a function of distance from the soma, where only YAC128 mice were sensitive to Mn exposure. Furthermore, striatal DA levels were unaltered at 13 weeks by genotype or Mn exposure, but at 16 weeks, both Mn exposure and the HD genotype were associated with quantitatively similar reductions in DA and its metabolites. Interestingly, Mn exposure of YAC128 mice did not further decrease DA or its metabolites versus YAC128 vehicle exposed or Mn exposed WT mice. Taken together, these results demonstrate Mn-HD disease-toxicant interactions at the onset of striatal dendritic neuropathology in YAC128 mice. Our results identify the earliest pathological change in striatum of YAC128 mice as being between 13 to 16 weeks. Finally, we show that mutant HTT suppresses some Mn-dependent changes, such as decreased DA levels, while it exacerbates others, such as dendritic pathology

    Citizen crowds and experts: observer variability in image-based plant phenotyping

    Get PDF
    Background:Image-based plant phenotyping has become a powerful tool in unravelling genotype–environment interactions. The utilization of image analysis and machine learning have become paramount in extracting data stemming from phenotyping experiments. Yet we rely on observer (a human expert) input to perform the phenotyping process. We assume such input to be a ‘gold-standard’ and use it to evaluate software and algorithms and to train learning-based algorithms. However, we should consider whether any variability among experienced and non-experienced (including plain citizens) observers exists. Here we design a study that measures such variability in an annotation task of an integer-quantifiable phenotype: the leaf count.Results:We compare several experienced and non-experienced observers in annotating leaf counts in images of Arabidopsis Thaliana to measure intra- and inter-observer variability in a controlled study using specially designed annotation tools but also citizens using a distributed citizen-powered web-based platform. In the controlled study observers counted leaves by looking at top-view images, which were taken with low and high resolution optics. We assessed whether the utilization of tools specifically designed for this task can help to reduce such variability. We found that the presence of tools helps to reduce intra-observer variability, and that although intra- and inter-observer variability is present it does not have any effect on longitudinal leaf count trend statistical assessments. We compared the variability of citizen provided annotations (from the web-based platform) and found that plain citizens can provide statistically accurate leaf counts. We also compared a recent machine-learning based leaf counting algorithm and found that while close in performance it is still not within inter-observer variability.Conclusions:While expertise of the observer plays a role, if sufficient statistical power is present, a collection of non-experienced users and even citizens can be included in image-based phenotyping annotation tasks as long they are suitably designed. We hope with these findings that we can re-evaluate the expectations that we have from automated algorithms: as long as they perform within observer variability they can be considered a suitable alternative. In addition, we hope to invigorate an interest in introducing suitably designed tasks on citizen powered platforms not only to obtain useful information (for research) but to help engage the public in this societal important problem

    Cell therapy in Huntington disease

    No full text
    corecore