132 research outputs found

    Genetic relationships within and among Iberian fescues (Festuca L.) based on PCR-amplified markers

    Full text link
    The genus Festuca comprises approximately 450 species and is widely distributed around the world. The Iberian Penninsula, with more than 100 taxa colonizing very diverse habitats, is one of its main centers of diversification. This study was conducted to assess molecular genetic variation and genetic relatedness among 91 populations of 31 taxa of Iberian fescues, based on several molecular markers (random amplified polymorphic DNA, amplified fragment length polymorphisms, and trnL sequences). The analyses showed the paraphyletic origin of the broad-leaved (subgenus Festuca, sections Scariosae and Subbulbosae, and subgenus Schedonorus) and the fine-leaved fescues (subgenus Festuca, sections Aulaxyper, Eskia, and Festuca). Schedonorus showed a weak relationship with Lolium rigidum and appeared to be the most recent of the broad-leaved clade. Section Eskia was the most ancient and Festuca the most recent of the fine-leaved clade. Festuca and Aulaxyper were the most related sections, in concordance with their taxonomic affinities. All taxa grouped into their sections, except F. ampla and F. capillifolia (section Festuca), which appeared to be more closely related to Aulaxyper and to a new independent section, respectively. Most populations clustered at the species level, but some subspecies and varieties mixed their populations. This study demonstrated the value in combining different molecular markers to uncover hidden genetic relationships between populations of Festuca

    Characterization of six microsatellite loci in Myrica faya (Myricaceae) and cross amplification in the endangered endemic M. rivas-martinezii in Canary Islands, Spain

    Get PDF
    Six novel polymorphic microsatellite markers were isolated from enriched libraries in Myrica faya Ait., recently renamed Morella faya, (fayatree, firetree, or firebush) in order to examine the genetic diversity in natural populations. Also, test cross-specific amplification and genetic diversity in Myrica rivas-martinezii, which is endemic on the Canary islands. Microsatellite loci were screened in 225 individuals of both species from different islands of the Canarian archipelago. All markers were successfully amplified from both Myrica species, with an average number of 6.5 and 9.3 alleles per locus in M. rivas-martinezii and M. faya, respectively. There was no evidence for linkage disequilibrium between loci, and the probability of null alleles ranged from 0.01 to 0.17

    Demethylation-induced developmental pleiotropy in Arabidopsis

    No full text
    The function of DNA methylation in higher plants was investigated by expression of a complementary DNA encoding a cytosine methyltransferase (MET1) from Arabidopsis thaliana as an antisense RNA in transgenic plants. This expression resulted in a 34 to 71 percent reduction in total genomic cytosine methylation. Loss of methylation was observed in both repetitive DNA and single-copy gene sequences. Developmental effects included altered heterochrony, changes in meristem identity and organ number, and female sterility. Cytosine demethylation prolonged both vegetative and reproductive phases of development. These findings implicate DNA methylation in establishing or maintaining epigenetic developmental states in the meristem

    Large-scale T-DNA mutagenesis in Arabidopsis for functional genomic analysis

    No full text
    In planta Agrobacterium-mediated transformation combined with a soil-based herbicide selection for transgenic plants was used to recover large numbers of transgenic Arabidopsis plants for functional genomic studies. A tissue-culture-free system for generating transgenic plants was achieved by infiltrating Arabidopsis plants with Agrobacterium tumefaciens harboring a binary T-DNA vector containing the phosphinothricin acetyltransferase gene from Streptomyces hygroscopicus, and by selecting transgenic Arabidopsis growing in soil by foliar application of the herbicide Finale (phosphinothricin). Analysis of herbicide-resistant plants indicated that all were transgenic and that the T-DNA transformation process occurred late during flower development, resulting in a preponderance of independently derived T-DNA insertions. T-DNA insertions were usually integrated in a concatenated, rearranged form, and using linkage analysis, we estimated that T1 plants carried between one and five T-DNA loci. Using pooling strategies, both DNA and seed pools were generated from about 38,000 Arabidopsis plants representing over 115,000 independent T-DNA insertions. We show the utility of these transgenic lines for identifying insertion mutations using gene sequence and PCR-based screening

    Ectopic anthocyanin pigmentation in maize a tool for defining interactions between homologous regulatory factors

    No full text
    The duplicated R and Sn genes are involved in the regulation of the maize anthocyanin biosynthetic pathway, encoding tissue-specific products that are homologous to the helix-loop-helix transcriptional activators. Sn determines the pigmentation of the mesocotyl, leaf basis and pericarp, while R determines pigmentation in various tissues, but not in the mesocotyl. In the progeny derived from test-crosses of R/Sn heterozygous plants, a high frequency of R plants exhibiting mesocotyl pigmentation was observed; these derivatives were defined as R*. In R* plants, the presence of this novel trait was not accompanied by the acquisition of Sn or by gross DNA rearrangements in the R profile. Accordingly, RT-PCR analysis showed that mesocotyl pigmentation in R* was attributable to the resident R gene. The occurrence of R* was observed with all R alleles tested, and was enhanced when a P component was present. The heritability of R* was shown only in the case of the standard R-r allele, which carries a functional P component. In addition, we observed that R* can influence other R alleles, transferring the ability to pigment the mesocotyl. R* is unstable, showing a tendency to return to its original state after a few generations. In R* plants there was a correlation between observed ectopic pigmentation and an increase in the level of A1 transcript but, surprisingly, not in the accumulation of R transcript. The results obtained from the analysis of test crosses of rSn/r delta plants suggest that an unlinked genetic factor accounts for the ectopic pigmentation. Concomitant occurrence of epigenetic events might explain the observed instability and reversibility noted above. Further study of this phenomenon might help to elucidate the basis of the interaction between homologous and non-homologous regulators
    corecore