36 research outputs found

    Vector Correlators in Lattice QCD: methods and applications

    Full text link
    We discuss the calculation of the leading hadronic vacuum polarization in lattice QCD. Exploiting the excellent quality of the compiled experimental data for the e^+e^- --> hadrons cross-section, we predict the outcome of large-volume lattice calculations at the physical pion mass, and design computational strategies for the lattice to have an impact on important phenomenological quantities such as the leading hadronic contribution to (g-2)mu and the running of the electromagnetic coupling constant. First, the R(s) ratio can be calculated directly on the lattice in the threshold region, and we provide the formulae to do so with twisted boundary conditions. Second, the current correlator projected onto zero spatial momentum, in a Euclidean time interval where it can be calculated accurately, provides a potentially critical test of the experimental R(s) ratio in the region that is most relevant for (g-2)mu. This observation can also be turned around: the vector correlator at intermediate distances can be used to determine the lattice spacing in fm, and we make a concrete proposal in this direction. Finally, we quantify the finite-size effects on the current correlator coming from low-energy two-pion states and provide a general parametrization of the vacuum polarization on the torus.Comment: 16 pages, 9 figure files; corrected a factor 2 in Eq. (7) over the published versio

    Twisted mass lattice QCD

    Full text link
    I review the theoretical foundations, properties as well as the simulation results obtained so far of a variant of the Wilson lattice QCD formulation: Wilson twisted mass lattice QCD. Emphasis is put on the discretization errors and on the effects of these discretization errors on the phase structure for Wilson-like fermions in the chiral limit. The possibility to use in lattice simulations different lattice actions for sea and valence quarks to ease the renormalization patterns of phenomenologically relevant local operators, is also discussed.Comment: v2. 143 pages, 28 figures. Sect. 2 now split in two sections. Several improvements for better readability. Typos corrected. Added 2 figures. Added references. Clarifications on few points. Conclusions and results unchanged. Version published on Physics Repor

    Review of lattice results concerning low-energy particle physics

    Get PDF

    ASHP Award for Distinguished Leadership

    No full text
    corecore