111 research outputs found
Experimentally determined wear behavior of an Al2O3-SiC composite from 25 to 1200 C
The sliding wear behavior of a self-mated alumina-silicon carbide whisker toughened composite was studied using optical, scanning electron (SEM) and transmission electron (TEM) microscopy. Because of its excellent strength and toughness properties this composite material is under consideration for use in heat engine applications for sliding contacts which operate at elevated temperatures. The composite's wear behavior and especially its wear mechanisms are not well understood. Pin-on-disk specimens were slid in air at 2.7 m/s sliding velocity, under a 26.5-N load, at temperatures 25 to 1200 C. Pin wear increased with increasing temperature. Based upon the microscopic analyses, the wear mechanism seems to be loosening of the reinforcing whiskers due to frictional and bulk heating. This leads to whisker pullout and increased wear
Sliding wear of self-mated Al2O3-SiC whisker reinforced composites at 23-1200 C
Microstructural changes occurring during sliding wear of self-mated Al2O3-SiC whisker reinforced composites were studied using optical, scanning electron microscopy, and transmission electron microscopy. Pin-on-disk specimens were slid in air at 2.7 m/sec sliding velocity under a 26.5 N load for 1 hr. Wear tests were conducted at 23, 600, 800, and 1200 C. Mild wear with a wear factor of 2.4 times 10(exp -7) to 1.5 times 10(exp -6) cu mm/Nm was experienced at all test temperatures. The composite shows evidence of wear by fatigue mechanisms at 800 C and below. Tribochemical reaction (SiC oxidation and reaction of SiO2 and Al2O3) leads to intergranular failure at 1200 C. Distinct microstructural differences existing at each test temperature are reported
Tribological characteristics of sputtered Au/Cr films on alumina substrates at elevated temperatures
Research to evaluate the tribological properties of alumina pins sliding against thin sputtered gold films deposited on alumina disk substrates is described. A 250 A thick chromium interlayer was first deposited onto the alumina test disks to enhance adhesion and high temperature wetting of the gold films. The Au/Cr films were tribotested in pure sliding in a pin-on-disk tribometer under a 4.9 N load at 1m/s. The test atmosphere was room air at temperatures of 25, 500, and 800 C and the test duration varied from 60 to 540 min. The use of the Au/Cr films reduced friction by about a factor of two compared to the unlubricated alumina sliding couple. The coatings prevented wear of the alumina substrate disks and reduced pin wear by one to two orders of magnitude. In addition, wear lives in excess of 200,000 sliding passes (9 hr) were observed during sliding at 800 C. The results suggest that these films show promise for the practical lubrication of many high temperature sliding components
High Temperature Solid Lubricant Materials for Heavy Duty and Advanced Heat Engines
Advanced engine designs incorporate higher mechanical and thermal loading to achieve efficiency improvements. This approach often leads to higher operating temperatures of critical sliding elements (e.g. piston ring/cylinder wall contacts and valve guides) which compromise the use of conventional and even advanced synthetic liquid lubricants. For these applications solid lubricants must be considered. Several novel solid lubricant composites and coatings designated PS/PM200 have been employed to dry and marginally oil lubricated contacts in advanced heat engines. These applications include cylinder kits of heavy duty diesels, and high temperature Stirling engines, sidewall seals of rotary engines, and various exhaust valve and exhaust component applications. This paper describes the tribological and thermophysical properties of these tribomaterials and reviews the results of applying them to engine applications. Other potential tribological materials and applications are also discussed with particular emphasis on heavy duty and advanced heat engines
Foil Bearing Starting Considerations and Requirements for Rotorcraft Engine Applications
Foil gas bearings under development for rotorcraft-sized, hot core engine applications have been susceptible to damage from the slow acceleration and rates typically encountered during the pre-ignition stage in conventional engines. Recent laboratory failures have been assumed to be directly linked to operating foil bearings below their lift-off speed while following conventional startup procedures for the engines. In each instance, the continuous sliding contact between the foils and shaft was believed to thermally overload the bearing and cause the engines to fail. These failures highlight the need to characterize required acceleration rates and minimum operating speeds for these applications. In this report, startup experiments were conducted with a large, rotorcraft engine sized foil bearing under moderate load and acceleration rates to identify the proper start procedures needed to avoid bearing failure. The results showed that a bearing under a 39.4 kPa static load can withstand a modest acceleration rate of 500 rpm/s and excessive loitering below the bearing lift-off speed provided an adequate solid lubricant is present
The Effect of Compositional Tailoring on the Thermal Expansion and Tribological Properties of PS300: A Solid Lubricant Composite Coating
This paper describes a research program in which the goal is to alter the thermal expansion coefficient of a composite solid lubricant coating, PS300, by compositional tailoring. PS300 is a plasma sprayed coating consisting of chrome oxide, silver and barium fluoride/calcium fluoride eutectic in NiCr binder. By adjusting the composition, the thermal expansion coefficient can be altered, and hence chosen, to more closely match a selected substrate preventing coating spallation at extreme temperatures. Thermal expansion coefficients (CTE) for a variety of compositions were measured from 25 to 800 C using a commercial dilatometer. The CTE's ranged from 7.0 to 13 x lO(exp -6)/deg C depending on the binder content. Subsequent tribological testing of a modified composition indicated that friction and wear properties were relatively insensitive to compositional tailoring
Recommended from our members
The effect of counterface on the tribological performance of a high temperature solid lubricant composite from 25 to 650{degree}C
The effect of counterface selection on the tribological performance of a Ag/BaF{sub 2}-CaF{sub 2} containing composite coating is studied. Ceramic (Al{sub 2}O{sub 3}) and metal (Inconel X-750) pins are slid against PS300 (a metal bonded chrome oxide coating with Ag and BaF{sub 2}/CaF{sub 2} lubricant additives) in a pin-on-disk tribometer at 25, 500 and 650 C. Compared to the ceramic counterface, the metal counterface generally exhibited lower friction and wear at 25 C but higher friction and wear at 650 C. Friction coefficients, for example, for the Al{sub 2}O{sub 3}/PS300 combination at 25 C were 0.64 compared to 0.23 for the Inconel/PS300 sliding couple. At 650 C the ranking was reversed. The Al{sub 2}O{sub 3}/PS300 combination gave a friction coefficient of 0.19 while the friction for the metal counterface increased slightly to about 0.3. Based upon these tribological results and other information found in the literature, it appears that the performance of each counterface/PS300 combination is affected by the ability of the solid lubricant additives to form an adequate transfer film. The effects of surface wettability and tribological compatibility are discussed in relation to the observed tribological results
Friction and Wear Characteristics of Candidate Foil Bearing Materials from 25 C to 800 C
The friction and wear behavior of unlubricated metal/metal sliding couples was investigated to screen potential candidates for high temperature foil bearings. The tribo-tests were run in an induction-heated high temperature pin-on-disk tribometer in an air atmosphere at a load of 4.9 N and at a sliding velocity of 1 m/s. The friction and wear properties of several nickel based alloys (Rene'41, Inconel X-750, Inconel 713C), iron based alloys (MA956 and Inconel 909) and a ceramic (Al2O3) were tested at 25, 500, and 800 C. In general, at elevated temperatures the alloys oxidized and formed a tenacious and lubricous oxide surface film or layer. At 800 C, Inconel X-750 versus Rene'41 had the lowest friction coefficient (0.27) and at 500 C, Inconel X-750 versus Inconel 909 the lowest pin wear (2.84 x 10(exp -6)cu mm/N-m). Gouging and severe wear of the softer material occurred whenever a significant difference in hardness existed between the pin and disk specimens
Preliminary Evaluation of PS300: A New Self-Lubricating High Temperature Composite Coating for Use to 800 C
This paper introduces PS300, a plasma sprayed, self-lubricating composite coating for use in sliding contacts at temperatures to 800 C. PS300 is a metal bonded chrome oxide coating with silver and BaF2/CaF2 eutectic solid lubricant additives. PS300 is similar to PS200, a chromium carbide based coating, which is currently being investigated for a variety of tribological applications. In pin-on-disk testing up to 650 C, PS300 exhibited comparable friction and wear properties to PS200. The PS300 matrix, which is predominantly chromium oxide rather than chromium carbide, does not require diamond grinding and polishes readily with silicon carbide abrasives greatly reducing manufacturing costs compared to PS200. It is anticipated that PS300 has potential for sliding bearing and seal applications in both aerospace and general industry
Composition optimization of self-lubricating chromium carbide-based composite coatings for use to 760 deg C
This paper describes new compositions of self-lubricating coatings that contain chromium carbide. A bonded chromium carbide was used as the base stock because of the known excellent wear resistance and the chemical stability of chromium carbide. Additives were silver and barium fluoride/calcium fluoride eutectic. The coating constituents were treated as a ternary system consisting of: (1) the bonded carbide base material, (2) silver, and (3) the eutectic. A study to determine the optimum amounts of each constituent was performed. The various compositions were prepared by powder blending. The blended powders were then plasma sprayed onto superalloy substrates and diamond ground to the desired coating thickness. Friction and wear studies were performed at temperatures from 25 to 760 C in helium and hydrogen. A variety of counterface materials were evaluated with the objective of discovering a satisfactory metal/coating sliding combination for potential applications such as piston ring/cylinder liner couples for Stirling engines
- …