155 research outputs found
Quantum Otto cycle with inner friction: finite-time and disorder effects
The concept of inner friction, by which a quantum heat engine is unable to
follow adiabatically its strokes and thus dissipates useful energy, is
illustrated in an exact physical model where the working substance consists of
an ensemble of misaligned spins interacting with a magnetic field and
performing the Otto cycle. The effect of this static disorder under a
finite-time cycle gives a new perspective of the concept of inner friction
under realistic settings. We investigate the efficiency and power of this
engine and relate its performance to the amount of friction from misalignment
and to the temperature difference between heat baths. Finally we propose an
alternative experimental implementation of the cycle where the spin is encoded
in the degree of polarization of photons.Comment: Published version in the Focus Issue on "Quantum Thermodynamics
Ochrobactrum sp. MPV1 from a dump of roasted pyrites can be exploited as bacterial catalyst for the biogenesis of selenium and tellurium nanoparticles
Background: Bacteria have developed different mechanisms for the transformation of metalloid oxyanions to non-toxic chemical forms. A number of bacterial isolates so far obtained in axenic culture has shown the ability to bioreduce selenite and tellurite to the elemental state in different conditions along with the formation of nanoparticles-both inside and outside the cells-characterized by a variety of morphological features. This reductive process can be considered of major importance for two reasons: firstly, toxic and soluble (i.e. bioavailable) compounds such as selenite and tellurite are converted to a less toxic chemical forms (i.e. zero valent state); secondly, chalcogen nanoparticles have attracted great interest due to their photoelectric and semiconducting properties. In addition, their exploitation as antimicrobial agents is currently becoming an area of intensive research in medical sciences. Results: In the present study, the bacterial strain Ochrobactrum sp. MPV1, isolated from a dump of roasted arsenopyrites as residues of a formerly sulfuric acid production near Scarlino (Tuscany, Italy) was analyzed for its capability of efficaciously bioreducing the chalcogen oxyanions selenite (SeO32-) and tellurite (TeO32-) to their respective elemental forms (Se0 and Te0) in aerobic conditions, with generation of Se- and Te-nanoparticles (Se- and TeNPs). The isolate could bioconvert 2 mM SeO32- and 0.5 mM TeO32- to the corresponding Se0 and Te0 in 48 and 120 h, respectively. The intracellular accumulation of nanomaterials was demonstrated through electron microscopy. Moreover, several analyses were performed to shed light on the mechanisms involved in SeO32- and TeO32- bioreduction to their elemental states. Results obtained suggested that these oxyanions are bioconverted through two different mechanisms in Ochrobactrum sp. MPV1. Glutathione (GSH) seemed to play a key role in SeO32- bioreduction, while TeO32- bioconversion could be ascribed to the catalytic activity of intracellular NADH-dependent oxidoreductases. The organic coating surrounding biogenic Se- and TeNPs was also characterized through Fourier-transform infrared spectroscopy. This analysis revealed interesting differences among the NPs produced by Ochrobactrum sp. MPV1 and suggested a possible different role of phospholipids and proteins in both biosynthesis and stabilization of such chalcogen-NPs. Conclusions: In conclusion, Ochrobactrum sp. MPV1 has demonstrated to be an ideal candidate for the bioconversion of toxic oxyanions such as selenite and tellurite to their respective elemental forms, producing intracellular Se- and TeNPs possibly exploitable in biomedical and industrial applications.[Figure not available: see fulltext.
Combining Revealed and Stated Preferences to design a new urban park in a metropolitan area of North-Western Italy
Inclusive and participatory decision-making is a sustainable option for governments and decision-makers to support real transformation and planning of policies and actions. Investigating and gathering the various views and opinions of stakeholders and citizens is particularly effective because it opens up a range of possibilities in co-constructing the city of the future. Among urban areas requiring planning, Urban Green Infrastructures (UGIs) represent spaces designed to improve the character of neighborhoods, as well as to increase the well-being of users. To achieve these goals, planners should adopt a design approach in which UGIs projects are shaped by local community concerns rather than by market conventions in urban design. Focusing on green recreational areas, this study employs an integrated approach combining Revealed (RP) and Stated Preferences (SP) to investigate citizens' preferences regarding urban parks. In particular, the experiment combines Travel Cost Method (TCM) and Discrete Choice Experiment (DCE) for supporting a requalification project in an ex-industrial area of Turin (Italy). In this way, it was possible to understand which facilities can contribute to increasing the citizensâ well-being and the overall efficiency of the UGIs provision and maintenance. The proposed methodology represents an operational and replicable procedure to support different renewal projects in which citizens' opinions are crucial for developing long-term sustainable socio-ecological plans and actions
Quasi-one-dimensional system as a high-temperature superconductor
It is well-known that quasi-one-dimensional superconductors suffer from the
pairing fluctuations that significantly reduce the superconducting temperature
or even completely suppress any coherent behavior. Here we demonstrate that a
coupling to a robust pair condensate changes the situation dramatically. In
this case the quasi-one-dimensional system can be a high temperature
superconductor governed by the proximity to the Lifshitz transition at which
the Fermi level approaches the lower edge of the single-particle spectrum.Comment: 5 pages, 1 figur
Elastic constant dishomogeneity and dependence of the broadening of the dynamical structure factor in disordered systems
We propose an explanation for the quadratic dependence on the momentum ,
of the broadening of the acoustic excitation peak recently found in the study
of the dynamic structure factor of many real and simulated glasses. We ascribe
the observed law to the spatial fluctuations of the local wavelength of
the collective vibrational modes, in turn produced by the dishomegeneity of the
inter-particle elastic constants. This explanation is analitically shown to
hold for 1-dimensional disordered chains and satisfatorily numerically tested
in both 1 and 3 dimensions.Comment: 4 pages, RevTeX, 5 postscript figure
Relaxation processes in harmonic glasses?
A relaxation process, with the associated phenomenology of sound attenuation
and sound velocity dispersion, is found in a simulated harmonic Lennard-Jones
glass. We propose to identify this process with the so called microscopic (or
instantaneous) relaxation process observed in real glasses and supercooled
liquids. A model based on the memory function approach accounts for the
observation, and allows to relate to each others: 1) the characteristic time
and strength of this process, 2) the low frequency limit of the dynamic
structure factor of the glass, and 3) the high frequency sound attenuation
coefficient, with its observed quadratic dependence on the momentum transfer.Comment: 11 pages, 3 figure
The Raman coupling function in amorphous silica and the nature of the long wavelength excitations in disordered systems
New Raman and incoherent neutron scattering data at various temperatures and
molecular dynamic simulations in amorphous silica, are compared to obtain the
Raman coupling coefficient and, in particular, its low frequency
limit. This study indicates that in the limit
extrapolates to a non vanishing value, giving important indications on the
characteristics of the vibrational modes in disordered materials; in particular
our results indicate that even in the limit of very long wavelength the local
disorder implies non-regular local atomic displacements.Comment: Revtex, 4 ps figure
High frequency sound waves in vitreous silica
We report a molecular dynamics simulation study of the sound waves in
vitreous silica in the mesoscopic exchanged momentum range. The calculated
dynamical structure factors are in quantitative agreement with recent
experimental inelastic neutron and x-ray scattering data. The analysis of the
longitudinal and transverse current spectra allows to discriminate between
opposite interpretations of the existing experimental data in favour of the
propagating nature of the high frequency sound waves.Comment: 4 pages, Revtex, 4 ps figures; to be published in Phys. Rev. Lett.,
February 198
Frustration and sound attenuation in structural glasses
Three classes of harmonic disorder systems (Lennard-Jones like glasses,
percolators above threshold, and spring disordered lattices) have been
numerically investigated in order to clarify the effect of different types of
disorder on the mechanism of high frequency sound attenuation. We introduce the
concept of frustration in structural glasses as a measure of the internal
stress, and find a strong correlation between the degree of frustration and the
exponent alpha that characterizes the momentum dependence of the sound
attenuation . In particular, alpha decreases from
about d+1 in low-frustration systems (where d is the spectral dimension), to
about 2 for high frustration systems like the realistic glasses examined.Comment: Revtex, 4 pages including 4 figure
- âŠ