152 research outputs found

    Andreev bound states in high-TcT_c superconducting junctions

    Full text link
    The formation of bound states at surfaces of materials with an energy gap in the bulk electron spectrum is a well known physical phenomenon. At superconductor surfaces, quasiparticles with energies inside the superconducting gap Δ\Delta may be trapped in bound states in quantum wells, formed by total reflection against the vacuum and total Andreev reflection against the superconductor. Since an electron reflects as a hole and sends a Cooper pair into the superconductor, the surface states give rise to resonant transport of quasiparticle and Cooper pair currents, and may be observed in tunneling spectra. In superconducting junctions, these surface states may hybridize and form bound Andreev states, trapped between the superconducting electrodes. In d-wave superconductors, the order parameter changes sign under 90o90^o rotation and, as a consequence, Andreev reflection may lead to the formation of zero energy quasiparticle bound states, midgap states (MGS). The formation of MGS is a robust feature of d-wave superconductivity and provides a unified framework for many important effects which will be reviewed: large Josephson current, low-temperature anomaly of the critical Josephson current, π\pi-junction behavior, 0→π0\to \pi junction crossover with temperature, zero-bias conductance peaks, paramagnetic currents, time reversal symmetry breaking, spontaneous interface currents, and resonance features in subgap currents. Taken together these effects, when observed in experiments, provide proof for d-wave superconductivity in the cuprates.Comment: 52 pages, 20 figures. Review article under consideration for publication in Superconductor Science and Technolog

    High-pressure structural, elastic and electronic properties of the scintillator host material, KMgF_3

    Full text link
    The high-pressure structural behaviour of the fluoroperovskite KMgF_3 is investigated by theory and experiment. Density functional calculations were performed within the local density approximation and the generalized gradient approximation for exchange and correlation effects, as implemented within the full-potential linear muffin-tin orbital method. In situ high-pressure powder x-ray diffraction experiments were performed up to a maximum pressure of 40 GPa using synchrotron radiation. We find that the cubic Pm\bar{3}m crystal symmetry persists throughout the pressure range studied. The calculated ground state properties -- the equilibrium lattice constant, bulk modulus and elastic constants -- are in good agreement with experimental results. By analyzing the ratio between the bulk and shear modulii, we conclude that KMgF_3 is brittle in nature. Under ambient conditions, KMgF_3 is found to be an indirect gap insulator with the gap increasing under pressure.Comment: 4 figure

    Tuning a Josephson junction through a quantum critical point

    Full text link
    We tune the barrier of a Josephson junction through a zero-temperature metal-insulator transition and study the thermodynamic behavior of the junction in the proximity of the quantum-critical point. We examine a short-coherence-length superconductor and a barrier (that is described by a Falicov-Kimball model) using the local approximation and dynamical mean-field theory. The inhomogeneous system is self-consistently solved by performing a Fourier transformation in the planar momentum and exactly inverting the remaining one-dimensional matrix with the renormalized perturbation expansion. Our results show a delicate interplay between oscillations on the scale of the Fermi wavelength and pair-field correlations on the scale of the coherence length, variations in the current-phase relationship, and dramatic changes in the characteristic voltage as a function of the barrier thickness or correlation strength (which can lead to an ``intrinsic'' pinhole effect).Comment: 16 pages, 15 figures, ReVTe

    Convergent, Parallel and Correlated Evolution of Trophic Morphologies in the Subfamily Schizothoracinae from the Qinghai-Tibetan Plateau

    Get PDF
    Schizothoracine fishes distributed in the water system of the Qinghai-Tibetan plateau (QTP) and adjacent areas are characterized by being highly adaptive to the cold and hypoxic environment of the plateau, as well as by a high degree of diversity in trophic morphology due to resource polymorphisms. Although convergent and parallel evolution are prevalent in the organisms of the QTP, it remains unknown whether similar evolutionary patterns have occurred in the schizothoracine fishes. Here, we constructed for the first time a tentative molecular phylogeny of the schizothoracine fishes based on the complete sequences of the cytochrome b gene. We employed this molecular phylogenetic framework to examine the evolution of trophic morphologies. We used Pagel's maximum likelihood method to estimate the evolutionary associations of trophic morphologies and food resource use. Our results showed that the molecular and published morphological phylogenies of Schizothoracinae are partially incongruent with respect to some intergeneric relationships. The phylogenetic results revealed that four character states of five trophic morphologies and of food resource use evolved at least twice during the diversification of the subfamily. State transitions are the result of evolutionary patterns including either convergence or parallelism or both. Furthermore, our analyses indicate that some characters of trophic morphologies in the Schizothoracinae have undergone correlated evolution, which are somewhat correlated with different food resource uses. Collectively, our results reveal new examples of convergent and parallel evolution in the organisms of the QTP. The adaptation to different trophic niches through the modification of trophic morphologies and feeding behaviour as found in the schizothoracine fishes may account for the formation and maintenance of the high degree of diversity and radiations in fish communities endemic to QTP

    Metallic, magnetic and molecular nanocontacts

    Get PDF
    Scanning tunnelling microscopy and break-junction experiments realize metallic and molecular nanocontacts that act as ideal one-dimensional channels between macroscopic electrodes. Emergent nanoscale phenomena typical of these systems encompass structural, mechanical, electronic, transport, and magnetic properties. This Review focuses on the theoretical explanation of some of these properties obtained with the help of first-principles methods. By tracing parallel theoretical and experimental developments from the discovery of nanowire formation and conductance quantization in gold nanowires to recent observations of emergent magnetism and Kondo correlations, we exemplify the main concepts and ingredients needed to bring together ab initio calculations and physical observations. It can be anticipated that diode, sensor, spin-valve and spin-filter functionalities relevant for spintronics and molecular electronics applications will benefit from the physical understanding thus obtained

    Increased Expression of Bcl11b Leads to Chemoresistance Accompanied by G1 Accumulation

    Get PDF
    BACKGROUND: The expression of BCL11B was reported in T-cells, neurons and keratinocytes. Aberrations of BCL11B locus leading to abnormal gene transcription were identified in human hematological disorders and corresponding animal models. Recently, the elevated levels of Bcl11b protein have been described in a subset of squameous cell carcinoma cases. Despite the rapidly accumulating knowledge concerning Bcl11b biology, the contribution of this protein to normal or transformed cell homeostasis remains open. METHODOLOGY/PRINCIPAL FINDINGS: Here, by employing an overexpression strategy we revealed formerly unidentified features of Bcl11b. Two different T-cell lines were forced to express BCL11B at levels similar to those observed in primary T-cell leukemias. This resulted in markedly increased resistance to radiomimetic drugs while no influence on death-receptor apoptotic pathway was observed. Apoptosis resistance triggered by BCL11B overexpression was accompanied by a cell cycle delay caused by accumulation of cells at G1. This cell cycle restriction was associated with upregulation of CDKN1C (p57) and CDKN2C (p18) cyclin dependent kinase inhibitors. Moreover, p27 and p130 proteins accumulated and the SKP2 gene encoding a protein of the ubiquitin-binding complex responsible for their degradation was repressed. Furthermore, the expression of the MYCN oncogene was silenced which resulted in significant depletion of the protein in cells expressing high BCL11B levels. Both cell cycle restriction and resistance to DNA-damage-induced apoptosis coincided and required the histone deacetylase binding N-terminal domain of Bcl11b. The sensitivity to genotoxic stress could be restored by the histone deacetylase inhibitor trichostatine A. CONCLUSIONS: The data presented here suggest a potential role of BCL11B in tumor survival and encourage developing Bcl11b-inhibitory approaches as a potential tool to specifically target chemoresistant tumor cells
    • …
    corecore