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Pseudopotential description of rare earths in oxides: The case of Er2Si2O7
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The applicability of ultrasoft pseudopotentials to the problem of rare-earth incorporation in silicates is
investigated using the compound Er2Si2O7 as a test case. It is found that density-functional theory within the
generalized gradient approximation provides a good description of the structural parameters, when treating the
Er 4f states as a partially occupied core shell. The density of states and the distribution of electronic charge are
analyzed, and it is concluded that the presence of Er tends to increase the covalency of neighboring Si-O
bonds.
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I. INTRODUCTION

Rare-earth incorporation in Si and SiO2 hosts is becoming
an increasingly important technique for creating advanced
optical components. However, little is known about the mi-
croscopic structure around the rare-earth impurities and the
mechanisms governing diffusion, clustering, etc. The mate-
rials have been investigated experimentally using a variety of
techniques, including magnetic resonance,1 extended x-ray-
absorption fine structure,2 optical spectroscopies3 and more.
However, as these experiments only give indirect informa-
tion about impurity structures, there is a need to complement
the experimental activities by theoretical calculations using
accurate quantum-mechanical methods. A technique which
recently proved useful in investigating the chemical structure
of pure and doped silica is density-functional theory
~DFT!,4,5 in combination with either norm-conserving or ul-
trasoft pseudopotentials.6–15 These methods offer both accu-
rate total energies and a computational efficiency which
makes it possible to treat relatively large unit cells~contain-
ing 50–100 atoms! which is essential to describe the com-
plex structural relaxations occuring in silica.

The inclusion of rare earths in pseudopotential calcula-
tions is complicated by the highly localized nature of the
valence 4f orbitals, which makes it difficult to construct a
soft pseudopotential giving a reliable description of these
states. One solution to this problem is to neglect the rela-
tively weak hybridization of thef states to the surrounding
orbitals, treating them as a partially occupied core shell. The
reasoning behind this idea is that the strong local Coulomb
repulsion between electrons in a particular 4f multiplet sup-
presses the hybridization between the 4f orbitals and the
other electronic states in the system, thus effectively elimi-
nating the 4f contribution to the cohesive energy. It has been
shown,16 using the all-electron linear-muffin-tin-orbital
method, that this procedure combined with intra-atomic en-
ergy corrections leads to a good description of rare-earth
valencies, suggesting that the picture of localized 4f states is
more realistic than that of itinerant 4f -derived bands. A
more sophisticated way of describing thef-electron states is
the self-interaction corrected~SIC! DFT scheme,17 in which
the self-interaction present in the Hartree- and exchange-
correlation terms of the DFT energy functional is explicitly

subtracted. This has the effect of shifting the 4f level down
in energy, which then supresses the interaction with the other
valence states. It was recently demonstrated that SIC DFT
provides an adequate description of the cohesive properties
of rare-earth metals and sulfides.18 The main advantage of
the SIC method over the more primitive approach of treating
the 4f orbitals as core states is that self-interaction correction
allows for a unified description of differently occupied 4f
states, and explicitly orthogonalizes the localized states to
the extended valence states. However, for the systems of
interest to us, thef occupancy~and hence the valence of the
rare-earth ions! can easily be inferred from either the stoichi-
ometry ~in the case of crystalline systems! or from optical
spectroscopy on the rare-earthf levels, and the orthogonal-
ization is usually a minor concern, as the 4f levels in the rare
earths are spatially well separated from the other valence
orbitals.

In the present paper we construct an ultrasoft pseudopo-
tential for Er, treating the Er 4f multiplet as a core shell, and
test it by calculating the equilibrium volume and internal
structure of the compound Er2Si2O7, which is known from
the crystallographic literature.19 Furthermore, we analyze the
electronic structure and charge distribution in the compound
in order to test the assumptions made in the construction of
the pseudopotential, and to shed light on the way in which
the presence of Er influences the Si-O bonding.

The remainder of this paper is organized as follows: Sec.
II briefly reviews the basic theory of Vanderbilts ultrasoft
pseudopotential~US-PP! method,20,21 and outlines our pro-
cedures for constructing Er pseudopotentials. In Sec. III our
numerical results are presented and discussed. Section IV
summarizes our conclusions.

II. THEORETICAL APPROACH

A. Elementary US-PP theory

It has recently been shown22 that the US-PP scheme origi-
nally introduced by Vanderbilt20 can be viewed as an ap-
proximation to the projector-augmented wave~PAW! all-
electron method developed by Blo¨chl.23 In this method, the
wave function is expanded in a basis of plane waves aug-
mented by atomic orbitals inside spheres centered around the
ions in the lattice:
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Cnk5C̃nk1(
i

^C̃nkub i&~f i2f̃ i !. ~1!

HereCnk is the true Kohn-Sham wave function, whileC̃nk
is a smooth pseudo-wave-function, that can be expanded in a
limited number of plane waves. The functionsf i andf̃ i are
atomic orbitals~i.e., a radial function times a spherical har-
monic! centered on a particular site in the crystal, and are
chosen to be identical outside the augmentation spheres, im-
plying thatCnk andC̃nk are also identical in this region.i is
a combined orbital and site index. Thef i functions are so-
lutions of the all-electron Kohn-Sham equations5 in the free
atom, at chosen energies~usually the atomic eigenvalues are
included!, while the f̃ i functions are soft pseudo-orbitals.
The functionsb i are a set of duals to the pseudoorbitals, i.e.,

^b j uf̃ i&5d i j . ~2!

Under the assumption of ‘‘pseudocompleteness,’’ by
which we shall understand fulfillment, within the augmenta-
tion spheres of the requirement,

C̃nk5(
i

^b i uC̃nk&f̃ i , ~3!

and, thereby,

Cnk5(
i

^b i uC̃nk&f i , ~4!

the charge density may be written as23

n~r !5(
nk

FUC̃nk~r !U21(
i j

^C̃nkub i&^b j uC̃nk&Qi j ~r2ti !G ,
~5!

Qi j ~r !5f i~r !* f j~r !2f̃ i~r !* f̃ j~r !. ~6!

ti is the position vector of the augmentation sphere con-
taining orbitali ~we assume nonoverlapping spheres, so that
the i j sum can be restricted to orbital pairs belonging to the
same sphere!. Usually onlyspd orbitals are included in the
f i ,f̃ i basis set. It can be shown that the incompleteness of
the pseudo-orbitals arising from higher angular momentum
components ofC̃nk does not affect the spherical average of
the charge density within the augmentation spheres.

In order for the pseudo-wave-functionsC̃nk to be smooth,
they must be solutions to a pseudo-Hamiltonian with a
smooth potential term. To achieve this, the local potential
from the ions,V, is replaced by a smooth local pseudopoten-
tial Ṽ within some cutoff radiusr c

loc . Furthermore, theQi j

functions defined above must be replaced by pseudized
counterparts,Q̃i j , to keep the Hartree and exchange correla-
tion potentials smooth. A cutoff radiusr in is chosen, beyond
which Qi j andQ̃i j are identical. The pseudization is done in
such a way that the lowest moments of the true and pseudo-
electron densities are identical, in order to correctly describe
the electrostatic interactions between the electronic density

inside a given sphere and the density in the surrounding re-
gion. Introducing the pseudodensityñ as

ñ~r !5(
nk

S UC̃nk~r !U21(
i j

^C̃nkub i&^b j uC̃nk&Q̃i j ~r2ti ! D ,

~7!

the total energy within the framework of the DFT can now
be written22

EDFT@n,V#5Ekin@$C̃nk%#1E dr ñ~r !@Ṽ~r !1 1
2 ṼH~r !#

1Exc@ ñ#1(
i

DEi , ~8!

EDFT being the DFT energy functional considered.ṼH is the
Hartree potential arising from the pseudodensity, andDEi is
an energy correction term which only depends on the~real
and pseudo! wave functions and charge densities within
spherei. Explicit expressions forDEi within the PAW and
US-PP formalisms are given in Refs. 21 and 22. While the
correction terms in the PAW formalism are chosen so as to
make the left-hand side of Eq.~8! exact, the corrections in
the US-PP scheme are of an approximate nature, based on a
linearization around the atomic occupation numbers.22 How-
ever, in both formalisms it may be shown that the total en-
ergy functional is independent ofṼ under the assumption of
pseudocompleteness.Ṽ may therefore either be chosen to
ensure optimal smoothness ofC̃nk , or to minimize the likely
errors arising from violations of the pseudocompleteness re-
quirement, e.g., by choosingṼ to give correct scattering
properties, at some chosen energy, in the lowest angular-
momentum channel not included in the set of augmentation
functions. In summary, the important parameters in the con-
struction of ultrasoft pseudopotentials are the following:

~i! The radii of the augmentation spheres, which may be
taken to bel-dependent. These are commonly denotedr cl .

~ii ! The pseudization radii for the local pseudopotential,
r c

loc , and the procedure for constructing this potential.
~iii ! The eigenenergies used when solving the Schro¨dinger

equation to obtain the functionsf i , and the electron con-
figuration assumed in the atomic all-electron calculation. The
latter should resemble the distribution of electrons in the
solid, but this may of course depend on the solid-state prob-
lem in question.

~iv! The pseudization radii for theQ functions. In the
present work we shall use the same cutoff radius for allQ
functions belonging to the Er atom.

Generally speaking, the choice of cutoff radii is a tradeoff
between considerations of accuracy, which would favor radii
as small as possible, since the electron density is described
correctly beyond the pseudization spheres, and consider-
ations of efficiency, which tend to favor larger spheres mak-
ing the construction of smooth pseudo-wave-functions and
pseudodensities easier. In addition, the spheres must be large
enough that the core orbitals are well confined within them,
in order to obtain a correct description of the charge density
in the region intermediate between spheres.
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B. Construction of Er pseudopotentials

The atomic configuration of Er is 4f 125d06s2. However,
in a solid, a considerables-d charge transfer must be ex-
pected, since the 5d and 6s shells are close in energy, and
the degeneracy of thed shell is large. Furthermore, it is well
known from optical spectroscopy that the 4f -shell gives off
an electron when Er is incorporated into a solid such as SiO2.
Therefore, it seems appropriate to base the pseudopotential
construction on an atomic calculation with 11 electrons in
the f shell ~which is here treated as a partially occupied core
state!, and three electrons distributed over the valence states.
Most of our trial pseudopotentials are based on the configu-
ration 4f 115d26s1. Possible alternatives could be the ionic
configuration 4f 115d16s1, which we have also investigated,
or configurations with some of the electronic weight in the
6p orbitals.

For the local pseudopotential we have investigated two
possible choices, requiring the potential to have correct scat-
tering properties in either thes or f channel at an energy of
0.0 Ry relative to the vacuum level in the free-atom calcula-
tion ~the eigenvalues of the atomic 5d and 6s states are -0.11
and -0.30 Ry, respectively!. No reminiscence of the~un-
physical! 4 f resonance that would appear in a band calcula-
tion including the 4f ’s as valence states was seen with either
choice, as will be discussed further below.

For the cutoff radii, we have chosen to putr c
loc and all

r cl’s equal to 2.0 atomic units~a.u.!, while the values of the
Q-function pseudization radii were put to 1.0 a.u. in all chan-
nels. The nonlinear core correction introduced by Louie,
Froyen, and Cohen24 was applied within a radius of 1.2 a.u.
With this choice of radii it was possible to construct pseudo-
potentials with solutions which were well-converged using a
kinetic energy cutoff of;20 Ry for the plane-wave expan-
sion. This is sufficient for the description of oxide systems
since O US-PP’s usually converge at 20–25 Ry. The con-
finement of the Er 5p orbital within r c is, however, only
;88%, while that of the 5s state is;96%. Therefore, these
states must be included as valence states, which is quite pos-
sible without sacrificing the smoothness of the resulting po-
tential. The only penalty is that more states, and more elec-
trons, need to be included in the band calculations. For the
study of Er impurities in large supercells, this is a minor
concern. To avoid putting the 5sp states in the valence, one
must go to a larger value ofr c , thereby reducing the reli-
ability and transferability of the pseudopotential. To test the
feasibility of this approach we constructed pseudopotentials
with the 5sp states in the core using cutoff radii of 2.5 and
2.8 a.u. The number of atomic orbitals in thesp channels
was taken to be equal to the number of valence shells~i.e.,
two when including the 5sp states in the valence, and one
otherwise!. The number of states in thed channel was always
two: one calculated at the atomic eigenvalue, the other at an
energy of 1.0 Ry relative to vacuum.

III. NUMERICAL RESULTS AND DISCUSSION

A. Lattice parameters for different pseudopotentials

The crystal structure of Er2Si2O7 was determined by
Smolin and Shepelev.19 The crystal is monoclinic with space

group P21 /b, and a basis cell consisting of two formula
units. The lengths of the Bravais vectors area54.683 Å,b
55.556 Å, andc510.79 Å. The angle between vectorsa
and b is 96°, while c is orthogonal to both of the other
vectors. Structural parameters are given in Table I. Whereas
all Er atoms in the unit cell are equivalent, and similarly for
Si, there are four distinct O species. Each Er atom in the
structure is coordinated to six oxygen atoms of types 2, 3 and
4, as defined in Table I. The O~1! species is peculiar in that
it is not coordinated to any Er atoms, but is instead bonded to
two Si atoms with a bond angle of 180°~compare to;144°
in a-quartz!. The other three O species are each coordinated
to one Si atom and two Er atoms, while all Si atoms are
coordinated to four O atoms. A ball-and-stick model of the
crystal structure is shown in Fig. 1.

To test our ultrasoft pseudopotentials, we have deter-
mined the theoretical equilibrium volume of the unit cell,
allowing all internal coordinates to relax. A full optimization
of the Bravais lattice parameters~the ratiosb/a andc/a! and
the angle betweena andb was not attempted, but variations

TABLE I. Structural parameters for the inequivalent atoms in
Er2Si2O7. The position vectors are given as a linear combination of
the a, b, andc Bravais lattice vectors described in the main text.

Theory ~PP1! Experiment~Ref. 19!
ta tb tc ta tb tc

Er 0.892 0.088 0.348 0.888 0.093 0.349
Si 0.360 0.643 0.388 0.360 0.644 0.387
O~1! 0.5 0.5 0.5 0.5 0.5 0.5
O~2! 0.203 0.864 0.450 0.205 0.865 0.449
O~3! 0.125 0.457 0.317 0.124 0.458 0.319
O~4! 0.620 0.751 0.298 0.618 0.752 0.298

FIG. 1. Ball-and stick model of a part of the Er2Si2O7 structure.
Large grey spheres represent Er, small black spheres represent Si,
and small white spheres represent O. All Er and Si atoms in the
infinite crystal are equivalent. Note that some O atoms are 3 coor-
dinated, and bonded to both Er and Si, while others are 2 coordi-
nated and bond only to Si with a bond angle of 180°.
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of the individual parameters by 1% at fixed volume was
found to raise the total energy in all cases, indicating that the
optimized parameters would be quite close to the experimen-
tal ones. All calculations were performed using the general-
ized gradient approximation~GGA! by Perdew and Wang25

~PW91! to the exchange-correlation part of the total energy.
The plane-wave basis set was cut off at a kinetic energy of
25 Ry, and the Brillouin zone was sampled using twok
points in the irreducible zone for the structural relaxations.
For the density of states~DOS! calculations and charge-
transfer analysis to be discussed below, a Monkhorts-Pack
grid26 consisting of 32k points in the full zone was used.
The results are shown in Table II, for six choices of pseudo-
potential: PP1 and PP2 were constructed from an atomic
5d26s1 calculation, with the local pseudopotential chosen to
scatter correctly in thes or f channel, respectively, at an
energy of 0.0 Ry relative to vacuum. PP3 is similar to PP1,
but is constructed from an atomic calculation in the ionic
5d16s1 configuration. PP4 and PP5 treat the 5sp orbitals as
core states, and haver cl’s and r c

loc at 2.5~PP4! and 2.8 a.u.
~PP5!. In this case the local potential is chosen in a manner
similar to PP2. PP6 is similar to PP2, but with cutoff radii as
for PP4. It can be seen that the equilibrium volume of the
unit cell is not very sensitive to the choice of the local
pseudopotential, or the electronic configuration of the free
atom. On the other hand, the inclusion of the 5sp states
appears to be important for the construction of a reliable
potential. Without these states, the equlibrium volume shows
a considerably larger dependence on the sphere radius than is
the case when putting the 5sp’s in the valence~compare PP2
and PP6!. Superficially, PP4 might seem the best choice,
giving perfect reproduction of the equilibrium volume. How-
ever, an overestimation of the lattice constant by;1% is
quite common for the GGA approximation, and a closer look
at the optimized structures indeed reveals that the agreement
comes about through a distortion of the atomic coordinates:
The Er-O bond lengths are underestimated, compared to ex-
periment, while the Si-O bond lengths are overestimated.
With 5sp states in the valence the bond lengths are consis-
tently overestimated, so these potentials lead to more realis-
tic atomic geometries. We have chosen to use PP1 for our
further investigations, as the results with this potential
seemed slightly less sensitive to the precise choice of scat-
tering energy in the construction of the local potential, but
for reasonable choices of this parameter PP2 would probably
be an equally viable choice. The relative differences in the
values of the logarithmic derivatives of all-electron~AE! and
pseudo-wave-functions are shown in Fig. 2 for PP1 and PP2.
It can be seen that thespd derivatives are very well repro-

duced in the pseudoatom, whereas there is a large deviation
in the f channel because the bound 4f state appearing at
;-8.3 eV in the AE atomic calculation is not accounted for
in the pseudoatom. As we want to treat the 4f electrons as
core states, this is of course the desired result. Note also that
the derivatives for PP1 and PP2 are close to being identical,
even for thef states.

The structural parameters calculated with PP1 are shown
in Table I, and are seen to correlate well with the experimen-
tal ones. The lengths of the Er-O bonds vary between 2.25
and 2.31 Å in the theoretical calculation, whereas the experi-
mental bond lengths lie between 2.23 and 2.31 Å. To test the
transferability of the pseudopotential, an optimization of the
lattice parameters of elemental Er was also performed. This
is a quite stringent test of the present approach, as the cou-
plings between a 4f shell and its surroundings are usually
more important in metallic systems. Both theoretical calcu-
lations and analysis of experimental data indicated that Er
also occurs in this case as a trivalent ion,18,16 i.e., with 11
electrons in the 4f shell, consistent with our pseudopotential.
Elemental Er crystallizes in a hexagonally close-packed
structure, meaning that two lattice parameters,a and c/a
must be determined. We performed the optimization using a
plane-wave cutoff of 30 Ry and sampling the 1. Brillouin
zone by a Monkhorts-Pack grid with eight divisions along
each reciprocal-lattice vector. The theoretical lattice param-
eters were determined to bea53.56 Å andc/a51.55, in
good agreement with the experimental values ofa53.56 Å
andc/a51.57. This result suggests that the present pseudo-
potential will offer a reliable description of most Er com-
pounds, metallic as well as nonmetallic.

B. Electronic structure

To discuss the choice of atomic configuration for the
pseudopotential construction in greater detail, we analyze the
charge distribution arising in the solid-state calculation. The
total charge inside a sphere of radiusr cut around some atom
can be calculated in two ways: One can expand the aug-
mented wave functions in atomic orbitals using Eq.~4!, and
obtain the density from those, or one can use the~plane-
wave-expanded! soft density as calculated from Eq.~7!. The
latter approach is only valid beyond theQ-function pseud-
ization radiusr in , because the pseudization of theQ func-
tions does not preserve their shape but only their moments.
On the other hand, the plane-wave-expanded density cap-
tures contributions from all angular-momentum components
of the~pseudo-!wave-functions, while the use of Eq.~4! only
captures thespd contribution. Thus a comparison of the re-
sults arising from each procedure constitutes a test of the
‘‘pseudocompleteness’’ assumption, i.e., the validity of Eqs.
~3! and ~4!.

In Table III we give the valence charges inside the pseud-
ization spheres of all inequivalent atoms in the Er2Si2O7 lat-
tice, and compare them to the charge of the free atom~in the
5d26s1 configuration! within the same radius. The charge
denoted AO is calculated from the atomic orbitals@that is,
Eq. ~4!#, while the charge denoted PW is calculated from the
~plane-wave-expanded! pseudodensity given by Eq.~7!. The

TABLE II. Theoretical equilibrium volumes and average Er-O
and Si-O bond lengths for Er2Si2O7 calculated with the pseudopo-
tentials described in the main text.

Pseudopot. PP1 PP2 PP3 PP4 PP5 PP6 Exp.

VWS(Å3) 288.0 287.3 289.5 279.2 282.6 289.0 279.1
dEr-O

av (Å) 2.278 2.276 2.284 2.245 2.259 2.282 2.262
dSi-O

av (Å) 1.642 1.642 1.644 1.642 1.643 1.644 1.621
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charge is negative, as we only count the electronic charge~in
units of e). The difference between the two methods of cal-
culating the charge arise from corrections to Eq.~4! indicat-
ing incompleteness of the atomic pseudo-orbitals. For Er and

O the two charges are in good agreement with each other,
while there is a significant correction to the AO charge for
Si. This is probably due to the fact that a substantial part of
the charge within the rather large~1.9 a.u.! Si augmentation
sphere comes from neighboring O orbitals, which will give
rise to very asymmetric charge components in a coordinate
system centered on the Si site. That this effect is not seen in
the Er spheres may be due to the larger Er-O distance
(;2.3 Å compared to;1.6 Å for Si-O!.

The comparison between augmentation sphere charges in
the solid and the free atom is interesting because the US-PP
approximation to the PAW formalism is based upon a linear
expansion of the density inside the augmentation spheres
around the atomic occupation numbers. It can be seen from
Table III that Er has a larger number of electrons inside the
augmentation sphere in the free atom than in the solid. In
Table IV, the AO charge is resolved on the different angular-

FIG. 2. The difference between logarithmic
derivatives in the real atom and in the pseudo
atom is plotted relative to the value in the real
atom. In~a! results for PP1 are shown, while~b!
gives the results for PP2. The energy is relative to
the vacuum level.

TABLE III. Electronic charge within pseudization spheres for
the inequivalent atoms in Er2Si2O7. The sphere radii are 1.9 a.u. for
Si, 1.3 a.u. for O, and 2.0 a.u. for Er.

Free atom Solid~AO! Solid ~PW!

Er -7.85 -7.71 -7.70
Si -1.40 -1.92 -2.04
O~1! -3.96 -4.42 -4.41
O~2! -3.96 -4.35 -4.35
O~3! -3.96 -4.36 -4.36
O~4! -3.96 -4.36 -4.36
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momentum components. Thes occupations are seen to be
identical, suggesting that 6s1 is an appropriate choice for the
atomic configuration. Thed-state occupation in the solid, on
the other hand, is only half of that appearing in the free atom,
with some of the charge being transferred to thep channel.
However, the weight of the atomic 6p state within the aug-
mentation sphere is only;0.02, so the charge transfer to the
p channel observed in the solid probably arises from states
having both 5p and 6p components. Such a charge distrib-
tion cannot be modeled accurately in any atomic calculation.
Table III also shows that the total charge inside the augmen-
tation sphere is rather small, compared to the valency of 11,
and if the charge around the atom is integrated out to a
greater cutoff radius it turns out that there are in fact more
electrons in the solid-state sphere than in the free atom~at
2.5 a.u., for instance, the difference is 0.87! due to contribu-
tions from the tails of neighboring atoms. Therefore, an
atomic configuration such as 5d16s1, with a positive net
charge, may yield atomic orbitals of a wrong nature. If one
wants to construct pseudopotentials tailored to a specific en-
vironment, a more fruitful procedure would probably be to
go beyond the free-atom approach and use densities and or-
bital energies derived directly from a solid-state calculation.

As can be seen in Table III, the number of electrons in the
Si augmentation spheres is larger in the solid than in the free
atom. This may seem surprising, as the Si-O bonds are ex-
pected to have a partially ionic character, with charge being
transferred from Si to O. However, since the atoms on the
lattice will always overlap somewhat with the orbitals of the
neighbors, whereas the free atom ‘‘sees’’ only its own
charge, the result is to be expected. A better way of investi-
gating the degree of ionicity of the bonds is to reference the

charge around the different atoms to that arising from a su-
perposition of unperturbed free-atom densities on the lattice
in question, that is,

r0~r !5(
R

(
i

rat
i ~rÀR2ti !. ~9!

HereR are the Bravais lattice vectors, while thei sum runs
over the atoms of the unit cell, andti are the position vectors
of the atoms in the cell withR50. In Table V we show the
charge transfers calculated from this reference density, that
is,

Dr5E
sphere

dr @n~r !2r0~r !#, ~10!

where the integral is evaluated over the augmentation sphere
in question. The AE charge transfers are calculated withn(r )
determined from Eq.~4!, while the PW values are derived
replacingn with ñ of Eq. ~7!. The values found for Er2Si2O7
are compared to those found ina-quartz using similar calcu-
lational methods. In the rare-earth compound the transfer of
electrons from Si is lower than in SiO2, indicating an in-
creased covalency of the Si-O bond. On the other hand, the
transfer of electrons to O is similar in the two compounds,
suggesting a saturation of the charge on the O atom. The
decrease in the charge transfer from Si on going to the rare-
earth compound then implies that charge transfer from Er to
O is favored over charge transfer from Si to O. In a simple
tight-binding picture, this finding may be rationalized by as-
suming that the Erspd levels lie above the Sisp levels. This
would make the Er-O bond more ionic than the Si-O bond,
and since the total charge transfer to O is similar in SiO2 and
Er2Si2O7 this leaves less room for charge transfer from Si to
O, i.e., the Si-O bond must assume a more covalent nature
when the O atom is also bonded to Er. This interpretation is
supported by an analysis of the electron DOS in Er2Si2O7. In
Fig. 3 we show the total DOS of this compound, together
with its projections on thef i orbitals of Er, Si and O. It can
be seen that the center of gravity of the Er-projected DOS is
somewhat higher than that of the Si projection, implying that
the Er levels in a tight-binding picture would be higher in
energy than the Si levels. This conclusion is consistent with

TABLE IV. Electronic charge within the augmentation sphere
of Er, as calculated from Eq.~4! or in the free atom, resolved on
different angular-momentum channels.

s p d

Free atom -1.98 -5.26 -0.61
Solid -1.98 -5.42 -0.31

TABLE V. Charge transfers within pseudization spheres for inequivalent atoms in Er2Si2O7, referenced
to either isolated free atoms or free-atom densities on a lattice@Eq. ~9!#. Similar quantities for Si and O in
a-quartz are also shown.

Transfer rel. to free atom Transfer rel. to lattice of free atoms

AO PW AO PW
Er 0.14 0.15 0.28 0.29
Si -0.51 -0.63 0.27 0.15
Si (a-quartz! -0.41 -0.53 0.31 0.19
O~1! -0.46 -0.46 -0.27 -0.26
O~2! -0.40 -0.39 -0.25 -0.25
O~3! -0.41 -0.40 -0.26 -0.25
O~4! -0.41 -0.40 -0.26 -0.25
O (a-quartz! -0.44 -0.43 -0.26 -0.25
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investigations of the oxidation of thin Er and Si layers on top
of a SiO2 film, showing that it is more favorable to oxidize
Er than Si.27

In connection with the DOS it should also be noted that
the split-off state appearing;10 eV below the Fermi level is
primarily located on the O~1! atoms, which are not bonded to
Er, and on Si. This is clear from Fig. 3~c!, where the DOS
has been resolved on different types of O atoms. That this
state appears separated from the other Si-O states is yet an-
other indication that the bonds between Si and the O atoms
which are neighbors of Er are of a more covalent nature than
the bonds to O atoms, which are only coordinated to Si.
Finally, it should be noted that no state resembling an Er 4f
resonance is seen in the DOS, confirming that this state is
effectively excluded from the pseudopotential calculation.

IV. CONCLUSION

In conclusion, we have investigated the compound
Er2Si2O7 within the framework of density-functional theory

using the ultrasoft pseudopotential approach. We find that
the experimental equilibrium volume and internal structure
are reasonably well described by the theory, provided that
the Er 5sp semicore orbitals are included as valence states.
The results thus demonstrate the feasibility of studying rare
earths in oxide materials with pseudopotential methods. An
analysis of the density of states and charge transfers indicate
that the presence of Er reduces the ionic character of the
Si-O bond in comparison with SiO2.
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FIG. 3. Total ~a! and orbital-projected DOS Er2Si2O7. In ~a! the contribution to the DOS from the interstitial region, obtained from
subtracting the sum off i-projected state densities from the total, is also shown. In~b! the projections on orbitals of different elements are
shown for the uppermost valence states. The O DOS is summed over all positions, and scaled by a factor 4/14 to facilitate comparison. In
~c! the DOS is resolved on the different inequivalent O atoms. The DOS was obtained sampling 32 points in the Brillouin zone with a
Gaussian smearing of 0.25 eV. The Fermi level is at zero energy.
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23P. Blöchl, Phys. Rev. B50, 17 953~1994!.
24S. Louie, S. Froyen, and M. Cohen, Phys. Rev. B26, 1738

~1982!.
25J. Perdew, J. Chevary, S. Vosko, K. Jackson, M. Pederson, D.

Singh, and C. Fiolhais, Phys. Rev. B46, 6671~1992!.
26H. Monkhorts and J. Pack, Phys. Rev. B13, 5188~1976!.
27S. Kennou, S. Ladas, M. Grimaldi, T. N. Tan, and J. Veuillen,

Appl. Surf. Sci.102, 142 ~1996!.

J. LAEGSGAARD AND K. STOKBRO PHYSICAL REVIEW B63 075108

075108-8


