33 research outputs found

    Evaluation of a Novel Biphasic Culture Medium for Recovery of Mycobacteria: A Multi-Center Study

    Get PDF
    on L-J slants. Automated liquid culture systems are expensive. A low-cost culturing medium capable of rapidly indicating the presence of mycobacteria is needed. The aim of this study was to develop and evaluate a novel biphasic culture medium for the recovery of mycobacteria from clinical sputum specimens from suspected pulmonary tuberculosis patients.<0.001).

    Evaluation of Comprehensive Emergency Capacity to Urban Flood Disaster: An Example from Zhengzhou City in Henan Province, China

    No full text
    In the context of climate change and urbanization, increasing flood disasters leads to severe losses and impacts on urban inhabitants. In order to enhance urban capacity to cope with floods and reduce losses, the comprehensive emergency-response capacity to flood disaster (CERCF) was studied in Zhengzhou City, which is seriously affected by floods. Firstly, the evaluation index system of flood emergency capacity was constructed from three aspects, including pre-disaster prevention capacity, during-disaster disposal capacity and post-disaster recovery capacity. Secondly, the weight of each index was calculated by the combination of the entropy weight method and the coefficient of variation method, and the evaluation model was established by the comprehensive index method. Thirdly, the CERCF of Zhengzhou City was classified into three grades by the Jenks natural-breakpoint classification method. Finally, the contribution model was used to reveal the contribution factors of flood emergency capacity in Zhengzhou city. The following beneficial conclusions were drawn: (1) The overall CERCF of Zhengzhou City was on a low level. The proportions of the study area at low, medium and high levels were 58.33%, 33.33% and 8.34%, respectively. Spatially, the CERCF was high in central regions and low in in the west and east parts of Zhengzhou City. (2) It was found that PDPC and PDRC made the greatest contribution, while DDDC has a relatively low contribution degree

    Evaluation of Comprehensive Emergency Capacity to Urban Flood Disaster: An Example from Zhengzhou City in Henan Province, China

    No full text
    In the context of climate change and urbanization, increasing flood disasters leads to severe losses and impacts on urban inhabitants. In order to enhance urban capacity to cope with floods and reduce losses, the comprehensive emergency-response capacity to flood disaster (CERCF) was studied in Zhengzhou City, which is seriously affected by floods. Firstly, the evaluation index system of flood emergency capacity was constructed from three aspects, including pre-disaster prevention capacity, during-disaster disposal capacity and post-disaster recovery capacity. Secondly, the weight of each index was calculated by the combination of the entropy weight method and the coefficient of variation method, and the evaluation model was established by the comprehensive index method. Thirdly, the CERCF of Zhengzhou City was classified into three grades by the Jenks natural-breakpoint classification method. Finally, the contribution model was used to reveal the contribution factors of flood emergency capacity in Zhengzhou city. The following beneficial conclusions were drawn: (1) The overall CERCF of Zhengzhou City was on a low level. The proportions of the study area at low, medium and high levels were 58.33%, 33.33% and 8.34%, respectively. Spatially, the CERCF was high in central regions and low in in the west and east parts of Zhengzhou City. (2) It was found that PDPC and PDRC made the greatest contribution, while DDDC has a relatively low contribution degree

    Heat Transfer Characteristics of Modular Heat Storage Wall Solar Greenhouse Based on Active Heat Storage System

    No full text
    The modular heat storage wall is a new type of solar greenhouse wall structure, which has the advantages of fast construction and good heat storage ability. This study provides data reference and practical value for producing modular heat storage wall in the construction of a solar greenhouse. In this paper, we used different heat storage materials to construct the modular wall. In the winter thermal environment test, soil module solar greenhouse (SG) and stone module solar greenhouse (PG) were controlled against each other in two greenhouses. The test results for 28 consecutive days (31 January 2021 9:00 to 28 February 2021 9:00) showed that both greenhouses could effectively increase the temperature in greenhouse by 10–12 °C. The average temperature of SG was 0.86 °C lower than that of PG during the daytime (09:00–17:00) and 0.44 °C higher than that of PG during the nighttime (17:00–09:00). Under typical sunny conditions, the average temperature differences between the inlet and outlet of SG in the heat storage and exothermic stage was less than that of PG, and the relative humidity difference was greater than that of PG. This indicated that SG had a better performance of heat preservation than PG and could raise the nighttime temperature rapidly. Under the condition of a typical cloudy day, the average temperature difference between the inlet and outlet was SG PG in the exothermic stage, which was consistent with the conclusion of sunny days. In the storage and exothermic stages of typical sunny days and cloudy days, the total heat exchange of SG was 464.87, 110.44 and 54.82 MJ and the total heat exchange of PG was 264.16, 61.60 and 46.89 MJ, respectively. Moreover, the heat storage and release of SG were more than that of PG in all stages. In summary, the thermal performance of the modular heat storage wall heliogreenhouse could meet the growth of tomato crop, in which the heat transfer performance of SG was optimum

    Properties of AgSnO<sub>2</sub> Contact Materials Doped with Different Concentrations of Cr

    No full text
    As an important component carrying the core function and service life of switching appliances, the selection and improvement of electrical contact materials is of great significance. AgSnO2, which is non-toxic, environmentally friendly and has excellent performance, has become the most promising contact material to replace AgCdO. However, it has deficiencies in machinability and electrical conductivity. The property of AgSnO2 contact material was improved by doping element Cr. The relationship between the mechanical and electrical properties of AgSnO2 contact materials and doping concentrations were investigated and analyzed by simulation and experiment. Based on the first principle, the elastic constants of supercell models Sn1−xCrxO2 (x = 0, 0.083, 0.125, 0.167, 0.25) were calculated. The results show that the material with a doping ratio of 25% is least prone to warp and crack, and the material with a doping ratio of 12.5% has the best toughness and ductility and the lowest hardness, which leads to molding and is subsequently easier to process. The Cr-doped AgSnO2 contacts with different doping proportions were prepared by the sol–gel and powder metallurgy method. Additionally, their physical performance and electrical contact properties were measured in experiments. The results show that the doped SnO2 powders prepared by the sol–gel method realize integration doping, which is consistent with the crystal model constructed in the simulation calculation. Sn0.875Cr0.125O2 has lower hardness, which is beneficial to process and form. Doping helps to stabilize the arc root, inhibit the ablation of contact by arc, reduces arc duration and arc energy, improves the resistance to arc erosion of AgSnO2 contact material, and makes electrical contact performance more stable. The contact material with a doping concentration of 16.7% has the best arc erosion resistance

    The Inhibition of Antibiotic Production in Streptomyces coelicolor Over-Expressing the TetR Regulator SCO3201 IS Correlated With Changes in the Lipidome of the Strain

    No full text
    International audienceIn condition of over-expression, SCO3201, a regulator of the TetR family was previously shown to strongly inhibit antibiotic production and morphological differentiation in Streptomyces coelicolor M145. In order to elucidate the molecular processes underlying this interesting, but poorly understood phenomenon, a comparative analysis of the lipidomes and transcriptomes of the strain over-expressing sco3201 and of the control strain containing the empty plasmid, was carried out. This study revealed that the strain over-expressing sco3201 had a higher triacylglycerol content and a lower phospholipids content than the control strain. This was correlated with up- and down- regulation of some genes involved in fatty acids biosynthesis (fab) and degradation (fad) respectively, indicating a direct or indirect control of the expression of these genes by SCO3201. In some instances, indirect control might involve TetR regulators, whose encoding genes present in close vicinity of genes involved in lipid metabolism, were shown to be differentially expressed in the two strains. Direct interaction of purified His6-SCO3201 with the promoter regions of four of such TetR regulators encoding genes (sco0116, sco0430, sco4167, and sco6792) was demonstrated. Furthermore, fasR (sco2386), encoding the activator of the main fatty acid biosynthetic operon, sco2386-sco2390, has been shown to be an illegitimate positive regulatory target of SCO3201. Altogether our data demonstrated that the sco3201 over-expressing strain accumulates TAG and suggested that degradation of fatty acids was reduced in this strain. This is expected to result into a reduced acetyl-CoA availability that would impair antibiotic biosynthesis either directly or indirectly
    corecore