46 research outputs found

    YB-1 recruitment to stress granules in zebrafish cells reveals a differential adaptive response to stress

    Get PDF
    The survival of cells exposed to adverse environmental conditions entails various alterations in cellular function including major changes in the transcriptome as well as a radical reprogramming of protein translation. While in mammals this process has been extensively studied, stress responses in non-mammalian vertebrates remain poorly understood. One of the key cellular responses to many different types of stressors is the transient generation of structures called stress granules (SGs). These represent cytoplasmic foci where untranslated mRNAs are sorted or processed for re-initiation, degradation, or packaging into mRNPs. Here, using the evolutionarily conserved Y-box binding protein 1 (YB-1) and G3BP1 as markers, we have studied the formation of stress granules in zebrafish (D. rerio) in response to different environmental stressors. We show that following heat shock, zebrafish cells, like mammalian cells, form stress granules which contain both YB-1 and G3BP1 proteins. Moreover, zfYB-1 knockdown compromises cell viability, as well as recruitment of G3BP1 into SGs, under heat shock conditions highlighting the essential role played by YB-1 in SG assembly and cell survival. However, zebrafish PAC2 cells do not assemble YB-1-positive stress granules upon oxidative stress induced by arsenite, copper or hydrogen peroxide treatment. This contrasts with the situation in human cells where SG formation is robustly induced by exposure to oxidative stressors. Thus, our findings point to fundamental differences in the mechanisms whereby mammalian and zebrafish cells respond to oxidative stress

    Human Centric Facial Expression Recognition

    Get PDF
    Facial expression recognition (FER) is an area of active research, both in computer science and in behavioural science. Across these domains there is evidence to suggest that humans and machines find it easier to recognise certain emotions, for example happiness, in comparison to others. Recent behavioural studies have explored human perceptions of emotion further, by evaluating the relative contribution of features in the face when evaluating human sensitivity to emotion. It has been identified that certain facial regions have more salient features for certain expressions of emotion, especially when emotions are subtle in nature. For example, it is easier to detect fearful expressions when the eyes are expressive. Using this observation as a starting point for analysis, we similarly examine the effectiveness with which knowledge of facial feature saliency may be integrated into current approaches to automated FER. Specifically, we compare and evaluate the accuracy of ‘full-face’ versus upper and lower facial area convolutional neural network (CNN) modelling for emotion recognition in static images, and propose a human centric CNN hierarchy which uses regional image inputs to leverage current understanding of how humans recognise emotions across the face. Evaluations using the CK+ dataset demonstrate that our hierarchy can enhance classification accuracy in comparison to individual CNN architectures, achieving overall true positive classification in 93.3% of cases

    BULLKID: Monolithic array of particle absorbers sensed by Kinetic Inductance Detectors

    Full text link
    We introduce BULLKID, an innovative phonon detector consisting of an array of dices acting as particle absorbers sensed by multiplexed Kinetic Inductance Detectors (KIDs). The dices are carved in a thick crystalline wafer and form a monolithic structure. The carvings leave a thin common disk intact in the wafer, acting both as holder for the dices and as substrate for the KID lithography. The prototype presented consists of an array of 64 dices of 5.4x5.4x5 mm3^3 carved in a 3" diameter, 5 mm thick silicon wafer, with a common disk 0.5 mm thick hosting a 60 nm patterned aluminum layer. The resulting array is highly segmented but avoids the use of dedicated holding structures for each unit. Despite the fact that the uniformity of the KID electrical response across the array needs optimization, the operation of 8 units with similar features shows, on average, a baseline energy resolution of 26±726\pm7 eV. This makes it a suitable detector for low-energy processes such as direct interactions of dark matter and coherent elastic neutrino-nucleus scattering

    Long-lasting effects of family-related factors on adults' ability to recognise brief facial expressions of emotion

    Get PDF
    This study investigated whether adults’ ability to attribute emotions to brief facial expressions (microexpressions) is associated with family-related environmental factors (FrFs) such as one’s number of siblings (Experiment 1), attachment style (Experiment 2), or perceived parental authority style (Experiment 3). Participants’ accuracy and reaction time (RT) to the recognition of anger, contempt, disgust, fear, happiness, and sadness to facial microexpressions (exposure: 100 ms) were measured with a six-alternative forced choice computerised method (6AFC). The attachment style and the authority style of the participants’ parents were accessed using questionnaires. The findings revealed that up to 13% of the variance in participants’ responses could be explained by FrFs, with modest to moderate effect sizes. Microexpressions linked to signs of hostility or threat (i.e., contempt and fear) were decoded faster and/or more accurately by adults with few or no siblings or with a fearful attachment. Conversely, participants who recalled their fathers as authoritarian were worse at recognising contempt and fear than participants who perceived them as permissive or authoritative. The findings suggest that early FrFs may still be involved in the fine-tuning of responses to signs of contextual danger when the time for cognitive processing of facial expressions is severely restricted

    Coherent elastic neutrino-nucleus scattering: Terrestrial and astrophysical applications

    Get PDF
    Coherent elastic neutrino-nucleus scattering (CEν\nuNS) is a process in which neutrinos scatter on a nucleus which acts as a single particle. Though the total cross section is large by neutrino standards, CEν\nuNS has long proven difficult to detect, since the deposited energy into the nucleus is \sim keV. In 2017, the COHERENT collaboration announced the detection of CEν\nuNS using a stopped-pion source with CsI detectors, followed up the detection of CEν\nuNS using an Ar target. The detection of CEν\nuNS has spawned a flurry of activities in high-energy physics, inspiring new constraints on beyond the Standard Model (BSM) physics, and new experimental methods. The CEν\nuNS process has important implications for not only high-energy physics, but also astrophysics, nuclear physics, and beyond. This whitepaper discusses the scientific importance of CEν\nuNS, highlighting how present experiments such as COHERENT are informing theory, and also how future experiments will provide a wealth of information across the aforementioned fields of physics
    corecore