798 research outputs found

    Cryptocapsinepoxide-type Carotenoids from Red Mamey, Pouteria sapota

    Get PDF
    Three new carotenoids, cryptocapsin-5,6-epoxide, 3ʹ-deoxycapsanthin-5,6-epoxide, and cryptocapsin-5,8-epoxides, have been isolated from the ripe fruits of red mamey (Pouteria sapota). Cryptocapsin-5,6-epoxide was prepared by partial synthesis via epoxidation of cryptocapsin and the (5R,6S)- and (5S,6R)-stereoisomers were identified by HPLC-ECD analysis. Spectroscopic data of the natural (anti) and semisynthetic (syn) derivatives obtained by acid-catalyzed rearrangement of cryptocapsin-5,8-epoxide stereoisomers were compared for structural elucidation. Chiral HPLC separation of natural and semisynthetic samples of cryptocapsin-5,8-epoxides was performed and HPLC-ECD analysis allowed configurational assignment of the separated stereoisomers

    Development of electrocardiogram intervals during growth of FVB/N neonate mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Electrocardiography remains the best diagnostic tool and therapeutic biomarker for a spectrum of pediatric diseases involving cardiac or autonomic nervous system defects. As genetic links to these disorders are established and transgenic mouse models produced in efforts to understand and treat them, there is a surprising lack of information on electrocardiograms (ECGs) and ECG abnormalities in neonate mice. This is likely due to the trauma and anaesthesia required of many legacy approaches to ECG recording in mice, exacerbated by the fragility of many mutant neonates. Here, we use a non-invasive system to characterize development of the heart rate and electrocardiogram throughout the growth of conscious neonate FVB/N mice.</p> <p>Results</p> <p>We examine ECG waveforms as early as two days after birth. At this point males and females demonstrate comparable heart rates that are 50% lower than adult mice. Neonatal mice exhibit very low heart rate variability. Within 12 days of birth PR, QRS and QTc interval durations are near adult values while heart rate continues to increase until weaning. Upon weaning FVB/N females quickly develop slower heart rates than males, though PR intervals are comparable between sexes until a later age. This suggests separate developmental events may contribute to these gender differences in electrocardiography.</p> <p>Conclusions</p> <p>We provide insight with a new level of detail to the natural course of heart rate establishment in neonate mice. ECG can now be conveniently and repeatedly used in neonatal mice. This should serve to be of broad utility, facilitating further investigations into development of a diverse group of diseases and therapeutics in preclinical mouse studies.</p

    French responses to the Prague Spring: connections, (mis)perception and appropriation

    Get PDF
    Looking at the vast literature on the events of 1968 in various European countries, it is striking that the histories of '1968' of the Western and Eastern halves of the continent are largely still written separately.1 Nevertheless, despite the very different political and socio-economic contexts, the protest movements on both sides of the Iron Curtain shared a number of characteristics. The 1968 events in Czechoslovakia and Western Europe were, reduced to the basics, investigations into the possibility of marrying social justice with liberty, and thus reflected a tension within European Marxism. This essay provides an analysis specifically of the responses by the French left—the Communist Party, the student movements and the gauchistes—to the Prague Spring, characterised by misunderstandings and strategic appropriation. The Prague Spring was seen by both the reformist and the radical left in France as a moderate movement. This limited interpretation of the Prague Spring as a liberal democratic project continues to inform our memory of it

    The Proportion of the Ungrazed Area of the Pasture (PUP) Determines When Forage Intake and Diet Quality Decline in Grazing Systems

    Get PDF
    Grazing management has to deal with the spatial and temporal heterogeneity of pastures. In this context it is desirable to have a grazing management strategy that can be applied in a wide range of pasture conditions to control daily forage intake, diet quality and thus, animal performance. Sward height has been extensively studied and has been found not to be universally applicable to control the animal response as its relationship with intake changes with sward structure (Prache and Peyraud, 2001; Sollenberger and Burns, 2001) . Selective grazing is a universal phenomenon where, independently of pasture condition, cattle prefer the more nutritious and easily ingested top stratum of the pasture before consuming the deeper strata that impose a lower diet quality and greater restrictions on selective grazing. This study tested the hypothesis that forage intake and diet quality significantly decreases when the top selected stratum is removed across the entire area of the pasture (i.e. the proportion of pasture ungrazed)

    Large herbivores facilitate a dominant grassland forb via multiple indirect effects

    Get PDF
    While large herbivores are critically important components of terrestrial ecosystems and can have pronounced top-down effects on plants, our understanding of the underlying mechanisms driving these effects remains incomplete. Large herbivores can alter plant growth, reproduction, and abundance through direct effects (predominantly consumption) and through indirect effects via altered interactions with abiotic factors and other species. We know considerably less about these indirect effects than the direct effects. Here, we integrate medium- and small-scale field experiments to investigate how a large vertebrate herbivore, cattle (Bos taurus), affects the aboveground biomass of a dominant forb species, Artemisia scoparia, via diverse direct and indirect pathways in a temperate grassland in northeast China. Although cattle consumed this forb, its biomass increased significantly in response to grazing, due to multiple indirect positive effects that outweighed the direct negative effects of consumption. Cattle preferentially consumed the competing grass Leymus chinensis, and altered Artemisia microhabitats by reducing total plant cover and litter biomass and by increasing the abundance of co-occurring ant species (e.g., Formica spp. and Lasius spp.). This led to additional indirect positive effects on A. scoparia likely due to (1) increased light availability in understory layers and other limiting resources (e.g., soil nutrients and moisture) caused by removal of competitors and plant litter at the soil surface and (2) the changes in resource availability (e.g., soil nutrients and moisture) associated with ant colonies. Our results show that large herbivores can affect plant growth not only via direct consumption, but also via multiple indirect effects. Focusing on the causes and consequences of herbivore-induced indirect effects will not only help us to better understand the influence of these animals in ecological systems, but will also lead to more effective land management and conservation practices in the regions they inhabit

    Mitochondrial Dysfunction Underlies Cardiomyocyte Remodeling in Experimental and Clinical Atrial Fibrillation

    Get PDF
    Atrial fibrillation (AF), the most common progressive tachyarrhythmia, results in structural remodeling which impairs electrical activation of the atria, rendering them increasingly permissive to the arrhythmia. Previously, we reported on endoplasmic reticulum stress and NAD+ depletion in AF, suggesting a role for mitochondrial dysfunction in AF progression. Here, we examined mitochondrial function in experimental model systems for AF (tachypaced HL-1 atrial cardiomyocytes and Drosophila melanogaster) and validated findings in clinical AF. Tachypacing of HL-1 cardiomyocytes progressively induces mitochondrial dysfunction, evidenced by impairment of mitochondrial Ca2+-handling, upregulation of mitochondrial stress chaperones and a decrease in the mitochondrial membrane potential, respiration and ATP production. Atrial biopsies from AF patients display mitochondrial dysfunction, evidenced by aberrant ATP levels, upregulation of a mitochondrial stress chaperone and fragmentation of the mitochondrial network. The pathophysiological role of mitochondrial dysfunction is substantiated by the attenuation of AF remodeling by preventing an increased mitochondrial Ca2+-influx through partial blocking or downregulation of the mitochondrial calcium uniporter, and by SS31, a compound that improves bioenergetics in mitochondria. Together, these results show that conservation of the mitochondrial function protects against tachypacing-induced cardiomyocyte remodeling and identify this organelle as a potential novel therapeutic target
    corecore