150 research outputs found

    Preparation and investigation of mefenamic acid-polyethylene glycol-sucrose ester solid dispersions

    Get PDF
    Mefenamic acid (MA) is a widely used non-steroidal anti-inflammatory (NSAID) drug. The adverse effects typical of NSAIDs are also present in the case of MA, partly due to its low water solubility. The aim of this study was to increase the water solubility of MA in order to influence its absorption and bioavailability. Solid dispersions of MA were prepared by the melting method using polyethylene glycol 6000 and different types (laurate, D-1216; palmitate, P-1670; stearate, S-1670) and amounts of sucrose esters as carriers. The X-ray diffraction results show that MA crystals were not present in the products. Dissolution tests carried out in artificial intestinal juice showed that the product containing 10 % D-1216 increased water solubility about 3 times. The apparent permeability coefficient of MA across human Caco-2 intestinal epithelial cell layers was high and, despite the difference in solubility, there was no further increase in drug penetration in the presence of the applied additives

    Identification of Reference Genes for Circadian Studies on Brain Microvessels and Choroid Plexus Samples Isolated from Rats

    Get PDF
    Delivery of putative compounds of therapeutic value to the brain is limited by brain barriers: the blood–brain barrier located in the endothelium of the brain microvessels (BrMVs) and the blood–cerebrospinal fluid barrier located in the epithelium of the choroid plexus (ChP). Understanding their function and modulation by the circadian clock may enhance the efficacy of brain-targeting therapies. The aim of the present study was to evaluate the stability of 10 reference genes in the BrMV and ChP, isolated from male and female rats at six time points (ZT1, 5, 9, 13, 17, and 21). Gene evaluations were performed by qPCR, analyzed by RefFinder tool, and verified by analyzing the expression of the brain and muscle ARNT-like 1 (Bmal1) using the qPCR and digital PCR methods. We identified as the most stable genes for circadian studies tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta (Ywhaz) and apolipoprotein E (Apoe) for BrMV, and beta actin (Actb) and hypoxanthine-guanine phosphoribosyltransferase (Hprt1) for ChP. After verification, ribosomal protein (Rps18) was also included as a sufficient reference gene. Additionally, the observed gender difference in the Bmal1 oscillations in both BrMV and ChP suggests that separate studies for each gender are recommended

    Application of a 3D-printed, high efficiency sample introduction system for single cell ICP-MS analysis

    Get PDF
    In this study, the application of an alternative, 3D-printed sample introduction system (SIS) is presented for single cell ICP-MS analysis. The SIS utilized in the experiments was designed by our group with the purpose to enhance single particle detection capabilities. It is able to provide higher transport efficiencies, increased sensitivity, lower background signals and a wider range of detectable particle size in single particle ICP-MS (spICP-MS) analysis compared to the standard SIS. Capitalizing on these features, two single cell ICP-MS (scICP-MS) experiments were done, using single cellular algae (Chlorella) and human endothelial cell suspensions, thereby demonstrating the SIS’s ability to facilitate cell biology related studies such as determining the elemental composition/metal uptake of a single cell or monitoring its cell-tocell variation in cell cultures

    Design, Optimization, and Application of a 3D-Printed Polymer Sample Introduction System for the ICP-MS Analysis of Nanoparticles and Cells

    Get PDF
    Commonly used sample introduction systems for inductively coupled plasma mass spectrometry (ICP-MS) are generally not well-suited for single particle ICP-MS (spICP-MS) applications due to their high sample requirements and low efficiency. In this study, the first completely 3D-printed, polymer SIS was developed to facilitate spICP-MS analysis. The system is based on a microconcentric pneumatic nebulizer and a single-pass spray chamber with an additional sheath gas flow to further facilitate the transport of larger droplets or particles. The geometry of the system was optimized using numerical simulations. Its aerosol characteristics and operational conditions were studied via optical particle counting and a course of spICP-MS measurements, involving nanodispersions and cell suspensions. In a comparison of the performance of the new and the standard (quartz microconcentric nebulizer plus a double-pass spray chamber) systems, it was found that the new sample introduction system has four times higher particle detection efficiency, significantly better signal-to-noise ratio, provides ca. 20% lower size detection limit, and allows an extension of the upper limit of transportable particle diameters to about 25 µm

    ApoE-Targeting Increases the Transfer of Solid Lipid Nanoparticles with Donepezil Cargo Across a Culture Model of the Blood–Brain Barrier

    Get PDF
    Pharmacological treatment of central nervous system (CNS) disorders is difficult, because the blood–brain barrier (BBB) restricts the penetration of many drugs into the brain. To solve this unmet therapeutic need, nanosized drug carriers are the focus of research efforts to develop drug delivery systems for the CNS. For the successful delivery of nanoparticles (NPs) to the brain, targeting ligands on their surface is necessary. Our research aim was to design a nanoscale drug delivery system for a more efficient transfer of donepezil, an anticholinergic drug in the therapy of Alzheimer’s disease across the BBB. Rhodamine B-labeled solid lipid nanoparticles with donepezil cargo were prepared and targeted with apolipoprotein E (ApoE), a ligand of BBB receptors. Nanoparticles were characterized by measurement of size, polydispersity index, zeta potential, thermal analysis, Fourier-transform infrared spectroscopy, in vitro release, and stability. Cytotoxicity of nanoparticles were investigated by metabolic assay and impedance-based cell analysis. ApoE-targeting increased the uptake of lipid nanoparticles in cultured brain endothelial cells and neurons. Furthermore, the permeability of ApoE-targeted nanoparticles across a co-culture model of the BBB was also elevated. Our data indicate that ApoE, which binds BBB receptors, can potentially be exploited for successful CNS targeting of solid lipid nanoparticles

    Cell Delivery: Routing Nanomolar Protein Cargoes to Lipid Raft-Mediated/Caveolar Endocytosis through a Ganglioside GM1-Specific Recognition Tag (Adv. Sci. 4/2020)

    Get PDF
    In article number 1902621, Tamás A. Martinek and co-workers develop a pentapeptidic tag, which reads the glycan code of ganglioside GM1 and triggers lipid raft-mediated endocytosis, avoiding lysosomal entrapment. This carrier molecule can deliver macromolecular cargoes (e.g., IgG complexes) into live cells with the possibility to escape to the cytosol.Peer reviewe

    Routing Nanomolar Protein Cargoes to Lipid Raft-Mediated/Caveolar Endocytosis through a Ganglioside GM1‐Specific Recognition Tag

    Get PDF
    There is a pressing need to develop ways to deliver therapeutic macromolecules to their intracellular targets. Certain viral and bacterial proteins are readily internalized in functional form through lipid raft-mediated/caveolar endocytosis, but mimicking this process with protein cargoes at therapeutically relevant concentrations is a great challenge. Targeting ganglioside GM1 in the caveolar pits triggers endocytosis. A pentapeptide sequence WYKYW is presented, which specifically captures the glycan moiety of GM1 (K-D = 24 nm). The WYKYW-tag facilitates the GM1-dependent endocytosis of proteins in which the cargo-loaded caveosomes do not fuse with lysosomes. A structurally intact immunoglobulin G complex (580 kDa) is successfully delivered into live HeLa cells at extracellular concentrations ranging from 20 to 160 nm, and escape of the cargo proteins to the cytosol is observed. The short peptidic WYKYW-tag is an advantageous endocytosis routing sequence for lipid raft-mediated/caveolar cell delivery of therapeutic macromolecules, especially for cancer cells that overexpress GM1.Peer reviewe
    corecore