24 research outputs found

    Structural study of whirlin, a modular protein pivotal in the function of vision and hearing

    No full text
    La vue et l'ouïe font intervenir des cellules capables de rapidement traduire une onde, lumineuse ou sonore, en un message électrochimique transmissible au cerveau. La fonction de ces cellules sensitives repose sur leurs morphologies uniques. Les mutations de onze gÚnes sont la cause des syndromes Usher, associant cécité et surdité. Les protéines Usher sont indispensables à l'architecture de ces deux types cellulaires ; elles forment des complexes dont les interactions clés sont maintenues principalement par des domaines PDZ. L'une des protéines centrales de ce réseau est la Whirline, une protéine multi-domaine contenant trois domaines PDZ. Pour comprendre les bases moléculaires des syndromes Usher, nous nous sommes concentrés sur la caractérisation biochimique et biophysique de la Whirline. Nous avons identifié un nouveau domaine HHD2 de la Whirline dont nous avons obtenue la structure à haute résolution et déterminé le comportement en solution, isolé et avec les domaines adjacents. Nous avons ensuite caractérisé un supramodule transitoire entre deux domaines PDZ, maintenu par des extensions structurées de chacun des domaines. Nous avons résolu la structure de la conformation compacte unique de ce complexe et étudié son équilibre avec un ensemble de conformations étendues. Nous avons enfin caractérisé in vitro le réseau d'interaction des domaines PDZ de la Whirline avec les protéines Usher. L'ensemble de nos résultats sur la structure modulaire et l'interactome de la Whirline permet de mieux comprendre le rÎle de la Whirline dans les différents complexes Usher et d'expliquer les conséquences de ses mutations sur les mécanismes moléculaires de l'audition et de la vision.Vision and hearing rely on the capacity of cells to rapidly transduce electromagnetic waves or sound waves into chemical messages that are transmissible to the brain. The function of these sensory cells requires unique morphologies. The mutations of eleven genes are responsible for Usher syndromes, associating blindness and deafness. The Usher proteins are pivotal to the architecture of the photoreceptor and hearing cells. They form complexes in which the critical interactions are mainly maintained by PDZ domains. One of these central proteins is Whirlin, a multi-domain protein encompassing three PDZ domains. To understand the molecular basis of the Usher syndromes, we focused our project on the biochemical and biophysical characterization of Whirlin. We identified a new HHD2 domain on Whirlin, for which we solved the structure at high resolution and determined the behavior in solution, isolated or with adjacent domains. We then identified a transient supramodule between two PDZ domains, maintained by PDZ structured extensions. We determined the structure of the compact and unique conformation of this tandem and we characterized its equilibrium with an ensemble of more extended conformations. Finally, we characterized in vitro the network of interaction of the PDZ domains of Whirlin, with the majority of the Usher proteins. Our results on the modular structure and the interactome of Whirlin get insight into the role of Whirlin in the numerous complexes formed by the Usher proteins and allow to better explain the consequences of its mutation on the molecular mechanisms of hearing and vision

    Etude structurale de la Whirline, protéine modulaire cruciale dans les mécanismes de la vision et de l'audition

    Get PDF
    Vision and hearing rely on the capacity of cells to rapidly transduce electromagnetic waves or sound waves into chemical messages that are transmissible to the brain. The function of these sensory cells requires unique morphologies. The mutations of eleven genes are responsible for Usher syndromes, associating blindness and deafness. The Usher proteins are pivotal to the architecture of the photoreceptor and hearing cells. They form complexes in which the critical interactions are mainly maintained by PDZ domains. One of these central proteins is Whirlin, a multi-domain protein encompassing three PDZ domains. To understand the molecular basis of the Usher syndromes, we focused our project on the biochemical and biophysical characterization of Whirlin. We identified a new HHD2 domain on Whirlin, for which we solved the structure at high resolution and determined the behavior in solution, isolated or with adjacent domains. We then identified a transient supramodule between two PDZ domains, maintained by PDZ structured extensions. We determined the structure of the compact and unique conformation of this tandem and we characterized its equilibrium with an ensemble of more extended conformations. Finally, we characterized in vitro the network of interaction of the PDZ domains of Whirlin, with the majority of the Usher proteins. Our results on the modular structure and the interactome of Whirlin get insight into the role of Whirlin in the numerous complexes formed by the Usher proteins and allow to better explain the consequences of its mutation on the molecular mechanisms of hearing and vision.La vue et l'ouïe font intervenir des cellules capables de rapidement traduire une onde, lumineuse ou sonore, en un message électrochimique transmissible au cerveau. La fonction de ces cellules sensitives repose sur leurs morphologies uniques. Les mutations de onze gÚnes sont la cause des syndromes Usher, associant cécité et surdité. Les protéines Usher sont indispensables à l'architecture de ces deux types cellulaires ; elles forment des complexes dont les interactions clés sont maintenues principalement par des domaines PDZ. L'une des protéines centrales de ce réseau est la Whirline, une protéine multi-domaine contenant trois domaines PDZ. Pour comprendre les bases moléculaires des syndromes Usher, nous nous sommes concentrés sur la caractérisation biochimique et biophysique de la Whirline. Nous avons identifié un nouveau domaine HHD2 de la Whirline dont nous avons obtenue la structure à haute résolution et déterminé le comportement en solution, isolé et avec les domaines adjacents. Nous avons ensuite caractérisé un supramodule transitoire entre deux domaines PDZ, maintenu par des extensions structurées de chacun des domaines. Nous avons résolu la structure de la conformation compacte unique de ce complexe et étudié son équilibre avec un ensemble de conformations étendues. Nous avons enfin caractérisé in vitro le réseau d'interaction des domaines PDZ de la Whirline avec les protéines Usher. L'ensemble de nos résultats sur la structure modulaire et l'interactome de la Whirline permet de mieux comprendre le rÎle de la Whirline dans les différents complexes Usher et d'expliquer les conséquences de ses mutations sur les mécanismes moléculaires de l'audition et de la vision

    Current approaches for integrating solution NMR spectroscopy and small-angle scattering to study the structure and dynamics of biomolecular complexes

    No full text
    International audienceThe study of complex and dynamic biomolecular assemblies is a key challenge in structural biology and requires the use of multiple methodologies providing complementary spatial and temporal information. NMR spectroscopy is a powerful technique that allows high-resolution structure determination of biomolecules as well as investigating their dynamic properties in solution. However, for high-molecular-weight systems, such as biomolecular complexes or multi-domain proteins, it is often only possible to obtain sparse NMR data, posing significant challenges to structure determination. Combining NMR data with information obtained from other solution techniques is therefore an attractive approach. The combination of NMR with small-angle X-ray and/or neutron scattering has been shown to be particularly fruitful. These scattering approaches provide low-resolution information of biomolecules in solution and reflect ensemble-averaged contributions of dynamic conformations for scattering molecules up to megadalton molecular weight. Here, we review recent developments in the combination of nuclear magnetic resonance spectroscopy (NMR) and small-angle scattering (SAS) experiments. We briefly outline the different types of information that are provided by these techniques. We then discuss computational methods that have been developed to integrate NMR and SAS data, particularly considering the presence of dynamic structural ensembles and flexibility of the investigated biomolecules. Finally, recent examples of the successful combination of NMR and SAS are presented to illustrate the utility of their combination

    1H, 13C and 15N backbone resonance assignments and dynamic properties of the PDZ tandem of Whirlin

    No full text
    International audienceMammals perceive sounds thanks to mechanosensory hair cells located in the inner ear. The stereocilia of these cells are tightly bound together in bundles by a network of cadherins and scaffolding proteins. Stereocilia deflection induces stretching of this network and is responsible for hair cell depolarization that triggers the neuronal message, transducing the mechanical signal into an electric signal transmissible to the brain. Nearly all proteins involved in this mechano-electrical transduction network contain short C-terminal motifs of interaction with PDZ domains (PSD-95, Discs Large, ZO-1). Interestingly only two of these proteins encompass PDZ domains: Harmonin and Whirlin. As our first step towards a comprehensive structural study of Whirlin, we have assigned the (1)H, (13)C and (15)N backbone resonances of a tandem formed by the first two PDZ domains of Whirlin, reported the secondary structure elements of this tandem as predicted by the TALOS+ server and evaluated its dynamics from (15)N relaxation measurements

    Structural plasticity of the HHD 2 domain of whirlin

    No full text
    International audienceWhirlin is a protein essential to sensory neurons. Its defects are responsible for nonsyndromic deafness or for the Usher syndrome, a condition associating congenital deafness and progressive blindness. This large multidomain scaffolding protein is expressed in three isoforms with different functions and localizations in stereocilia bundles of hearing hair cells or in the connecting cilia of photoreceptor cells. The HHD2 domain of whirlin is the only domain shared by all isoforms, but its function remains unknown. In this article, we report its crystal structure in two distinct conformations, a monomeric five‐helix bundle, similar to the known structure of other HHD domains, and a three‐helix bundle organized as a swapped dimer. Most of the hydrophobic contacts and electrostatic interactions that maintain the globular monomeric form are conserved at the protomer interface of the dimer. NMR experiments revealed that the five‐helix conformation is predominant in solution, but exhibits increased dynamics on one face encompassing the hinge loops. Using NMR and SAXS, we also show that HHD2 does not interact with its preceding domains. Our findings suggest that structural plasticity might play a role in the function of the HHD2 domai

    Potentiation of ABCA3 lipid transport function by ivacaftor and genistein.

    Get PDF
    ABCA3 is a phospholipid transporter implicated in pulmonary surfactant homoeostasis and localized at the limiting membrane of lamellar bodies, the storage compartment for surfactant in alveolar type II cells. Mutations in ABCA3 display a common genetic cause for diseases caused by surfactant deficiency like respiratory distress in neonates and interstitial lung disease in children and adults, for which currently no causal therapy exists. In this study, we investigated the effects of ivacaftor and genistein, two potentiators of the cystic fibrosis transmembrane conductance regulator (CFTR), on ABCA3-specific lipid transport function. Wild-type (WT) and functional ABCA3 mutations N568D, F629L, G667R, T1114M and L1580P were stably expressed in A549 cells. Three-dimensional modelling predicted functional impairment for all five mutants that was confirmed by in vitro experiments (all <14% of WT functional activity). Treatment with potentiators rescued the mutants N568D (up to 114% of WT), F629L (up to 47% of WT), and G667R (up to 60% of WT), the latter variation needing higher concentrations of genistein, showing reduced affinity of the potentiator to the mutant protein. Our results present a first proof that functional ABCA3 mutations are rescued by CFTR potentiators, making them a potential therapeutical option for patients suffering from surfactant deficiency due to ABCA3 mutations

    Deciphering the unconventional peptide binding to the PDZ domain of MAST2

    No full text
    International audiencePhosphatase and tensin homologue (PTEN) and microtubule-associated serine threonine kinase 2 (MAST2) are key negative regulators of survival pathways in neuronal cells. The two proteins interact via the PDZ (PSD-95, Dlg1, Zo-1) domain of MAST2 (MAST2-PDZ). During infection by rabies virus, the viral glycoprotein competes with PTEN for interaction with MAST2-PDZ and promotes neuronal survival. The C-terminal PDZ-binding motifs (PBMs) of the two proteins bind similarly to MAST2-PDZ through an unconventional network of connectivity involving two anchor points. Combining stopped-flow fluorescence, analytical ultracentrifugation (AUC), microcalorimetry and NMR, we document the kinetics of interaction between endogenous and viral ligands to MAST2-PDZ as well as the dynamic and structural effects of these interactions. Viral and PTEN peptide interactions to MAST2-PDZ occur via a unique kinetic step which involves both canonical C-terminal PBM binding and N-terminal anchoring. Indirect effects induced by the PBM binding include modifications to the structure and dynamics of the PDZ dimerization surface which prevent MAST2-PDZ auto-association. Such an energetic communication between binding sites and distal surfaces in PDZ domains provides interesting clues for protein regulation overall

    Strategies to interfere with PDZ-mediated interactions in neurons: What we can learn from the rabies virus

    No full text
    International audiencePDZ (PSD-95/Dlg/ZO-1) domains play a major role in neuronal homeostasis in which they act as scaffold domains regulating cellular trafficking, self-association and catalytic activity of essential proteins such as kinases and phosphatases. Because of their central role in cell signaling, cellular PDZ-containing proteins are preferential targets of viruses to hijack cellular function to their advantage. Here, we describe how the viral G protein of the rabies virus specifically targets the PDZ domain of neuronal enzymes during viral infection. By disrupting the complexes formed by cellular enzymes and their ligands, the virus triggers drastic effect on cell signaling and commitment of the cell to either survival (virulent strains) or death (vaccinal strains). We provide structural and biological evidences that the viral proteins act as competitors endowed with specificity and affinity in an essential cellular process by mimicking PDZ binding motif of cellular partners. Disruption of critical endogenous protein-protein interactions by viral protein drastically alters intracellular protein trafficking and catalytic activity of cellular proteins that control cell homeostasis. This work opens up many perspectives to mimic viral sequences and developing innovative therapies to manipulate cellular homeostasis

    Tuning interval Branch-and-Prune for protein structure determination

    Get PDF
    International audienceThe interval Branch and Prune (iBP) algorithm for obtaining solutions to the interval Discretizable Molecular Distance Geometry Problem (iDMDGP) has proven itself as a powerful method for molecular structure determination. However, substantial obstacles still must be overcome before iBP may be employed as a tractable general-purpose alternative to existing structure determination algorithms. This work introduces an iterative variant of the iBP algorithm that leverages existing knowledge of protein structures in order to reduce the size of the effective search space by many orders of magnitude. These improvements are included in a newly released implementation of the iBP software that aims to provide a solid platform for both research and application of the iDMDGP
    corecore