37 research outputs found

    Osteocytes and Their Messengers as Targets for the Treatment of Multiple Myeloma

    Get PDF
    Osteocytes, the most abundant cells in the bone, orchestrate the function of osteoblasts and osteocytes to control physiological bone homeostasis. Accumulating evidence demonstrates that alteration of osteocyte function underlies the pathophysiology of several skeletal disorders, and that therapeutic targeting of factors produced by these cells improves skeletal health. Despite the advances in the knowledge of osteocyte biology, the contribution of these cells to the damaging effects of cancer in bone is practically unknown. Multiple myeloma is a plasma cell malignancy characterized by the presence of skeletal lesions and severe bone pain. Recent findings suggest that myeloma cells educate osteocytes to generate a microenvironment that is conducive to tumor progression, skeletal destruction, and bone pain. This review features some of these investigations and discusses the potential of targeting osteocytic pathways and osteocyte messengers for the treatment of multiple myeloma

    Osteocytes and Skeletal Pathophysiology

    Get PDF
    For many years, osteocytes have been the forgotten bone cells and considered as inactive spectators buried in the bone matrix. We now know that osteocytes detect and respond to mechanical and hormonal stimuli to coordinate bone resorption and bone formation. Osteocytes are currently considered a major source of molecules that regulate the activity of osteoclasts and osteoblasts, such as RANKL and sclerostin; and genetic and pharmacological manipulations of either molecule markedly affect bone homeostasis. Besides playing a role in physiological bone homeostasis, accumulating evidence supports the notion that dysregulation of osteocyte function and alteration of osteocyte life-span underlies the pathophysiology of skeletal disorders characterized by loss bone mass and increased bone fragility, as well as the damaging effects of cancer in bone. In this review, we highlight some of these investigations and discuss novel observations that demonstrate that osteocytes, far from being passive cells entombed in the bone, are critical for bone function and maintenance

    Sclerostin: an Emerging Target for the Treatment of Cancer-Induced Bone Disease

    Get PDF
    Purpose of Review This review provides a summary of the current knowledge on Sost/sclerostin in cancers targeting the bone, discusses novel observations regarding its potential as a therapeutic approach to treat cancer-induced bone loss, and proposes future research needed to fully understand the potential of therapeutic approaches that modulate sclerostin function. Recent Findings Accumulating evidence shows that sclerostin expression is dysregulated in a number of cancers that target the bone. Further, new findings demonstrate that pharmacological inhibition of sclerostin in preclinical models of multiple myeloma results in a robust prevention of bone loss and preservation of bone strength, without apparent effects on tumor growth. These data raise the possibility of targeting sclerostin for the treatment of cancer patients with bone metastasis. Summary Sclerostin is emerging as a valuable target to prevent the bone destruction that accompanies the growth of cancer cells in the bone. Further studies will focus on combining anti-sclerostin therapy with tumor-targeted agents to achieve both beneficial skeletal outcomes and inhibition of tumor progression

    Role of osteocytes in multiple myeloma bone disease

    Get PDF
    PURPOSE OF REVIEW: Despite the increased knowledge of osteocyte biology, the contribution of this most abundant bone cell to the development and progression of multiple myeloma in bone is practically unexplored. RECENT FINDINGS: Multiple myeloma bone disease is characterized by exacerbated bone resorption and the presence of osteolytic lesions that do not heal because of a concomitant reduction in bone formation. Osteocytes produce molecules that regulate both bone formation and resorption. Recent findings suggest that the life span of osteocytes is compromised in multiple myeloma patients with bone lesions. In addition, multiple myeloma cells affect the transcriptional profile of osteocytes by upregulating the production of pro-osteoclastogenic cytokines, stimulating osteoclast formation and activity. Further, patients with active multiple myeloma have elevated circulating levels of sclerostin, a potent inhibitor of bone formation which is specifically expressed by osteocytes in bone. SUMMARY: Understanding the contribution of osteocytes to the mechanisms underlying the skeletal consequences of multiple myeloma bone disease has the potential to provide important new therapeutic strategies that specifically target multiple myeloma-osteocyte interactions

    Role and mechanism of action of Sclerostin in bone

    Get PDF
    After discovering that lack of Sost/sclerostin expression is the cause of the high bone mass human syndromes Van Buchem disease and sclerosteosis, extensive animal experimentation and clinical studies demonstrated that sclerostin plays a critical role in bone homeostasis and that its deficiency or pharmacological neutralization increases bone formation. Dysregulation of sclerostin expression also underlies the pathophysiology of skeletal disorders characterized by loss of bone mass as well as the damaging effects of some cancers in bone. Thus, sclerostin has quickly become a promising molecular target for the treatment of osteoporosis and other skeletal diseases, and beneficial skeletal outcomes are observed in animal studies and clinical trials using neutralizing antibodies against sclerostin. However, the anabolic effect of blocking sclerostin decreases with time, bone mass accrual is also accompanied by anti-catabolic effects, and there is bone loss over time after therapy discontinuation. Further, the cellular source of sclerostin in the bone/bone marrow microenvironment under physiological and pathological conditions, the pathways that regulate sclerostin expression and the mechanisms by which sclerostin modulates the activity of osteocytes, osteoblasts, and osteoclasts remain unclear. In this review, we highlight the current knowledge on the regulation of Sost/sclerotin expression and its mechanism(s) of action, discuss novel observations regarding its role in signaling pathways activated by hormones and mechanical stimuli in bone, and propose future research needed to understand the full potential of therapeutic interventions that modulate Sost/sclerostin expression

    Ex Vivo Organ Cultures as Models to Study Bone Biology

    Get PDF
    The integrity of the skeleton is maintained by the coordinated and balanced activities of the bone cells. Osteoclasts resorb bone, osteoblasts form bone, and osteocytes orchestrate the activities of osteoclasts and osteoblasts. A variety of in vitro approaches has been used in an attempt to reproduce the complex in vivo interactions among bone cells under physiological as well as pathological conditions and to test new therapies. Most cell culture systems lack the proper extracellular matrix, cellular diversity, and native spatial distribution of the components of the bone microenvironment. In contrast, ex vivo cultures of fragments of intact bone preserve key cell–cell and cell–matrix interactions and allow the study of bone cells in their natural 3D environment. Further, bone organ cultures predict the in vivo responses to genetic and pharmacologic interventions saving precious time and resources. Moreover, organ cultures using human bone reproduce human conditions and are a useful tool to test patient responses to therapeutic agents. Thus, these ex vivo approaches provide a platform to perform research in bone physiology and pathophysiology. In this review, we describe protocols optimized in our laboratories to establish ex vivo bone organ cultures and provide technical hints and suggestions. In addition, we present examples on how this technical approach can be employed to study osteocyte biology, drug responses in bone, cancer‐induced bone disease, and cross‐talk between bone and other organs

    Aplidin (plitidepsin) is a novel anti-myeloma agent with potent anti-resorptive activity mediated by direct effects on osteoclasts

    Get PDF
    Despite recent progress in its treatment, Multiple Myeloma (MM) remains incurable and its associated bone disease persists even after complete remission. Thus, identification of new therapeutic agents that simultaneously suppress MM growth and protect bone is an unmet need. Herein, we examined the effects of Aplidin, a novel anti-cancer marine-derived compound, on MM and bone cells. In vitro, Aplidin potently inhibited MM cell growth and induced apoptosis, effects that were enhanced by dexamethasone (Dex) and bortezomib (Btz). Aplidin modestly reduced osteocyte/osteoblast viability and decreased osteoblast mineralization, effects that were enhanced by Dex and partially prevented by Btz. Further, Aplidin markedly decreased osteoclast precursor numbers and differentiation, and reduced mature osteoclast number and resorption activity. Moreover, Aplidin reduced Dex-induced osteoclast differentiation and further decreased osteoclast number when combined with Btz. Lastly, Aplidin alone, or suboptimal doses of Aplidin combined with Dex or Btz, decreased tumor growth and bone resorption in ex vivo bone organ cultures that reproduce the 3D-organization and the cellular diversity of the MM/bone marrow niche. These results demonstrate that Aplidin has potent anti-myeloma and anti-resorptive properties, and enhances proteasome inhibitors blockade of MM growth and bone destruction

    Parathyroid hormone receptor signaling induces bone resorption in the adult skeleton by directly regulating the RANKL gene in osteocytes

    Get PDF
    PTH upregulates the expression of the receptor activator of nuclear factor κB ligand (Rankl) in cells of the osteoblastic lineage, but the precise differentiation stage of the PTH target cell responsible for RANKL-mediated stimulation of bone resorption remains undefined. We report that constitutive activation of PTH receptor signaling only in osteocytes in transgenic mice (DMP1-caPTHR1) was sufficient to increase Rankl expression and bone resorption. Resorption in DMP1-caPTHR1 mice crossed with mice lacking the distal control region regulated by PTH in the Rankl gene (DCR(-/-)) was similar to DMP1-caPTHR1 mice at 1 month of age, but progressively declined to reach values undistinguishable from wild-type (WT) mice at 5 months of age. Moreover, DMP1-caPTHR1 mice exhibited low tissue material density and increased serum alkaline phosphatase activity at 5 month of age, and these indices of high remodeling were partially and totally corrected in compound DMP1-caPTHR1;DCR(-/-) male mice, and less affected in female mice. Rankl expression in bones from DMP1-caPTHR1 mice was elevated at both 1 and 5 months of age, whereas it was high, similar to DMP1-caPTHR1 mice at 1 month, but low, similar to WT levels at 5 months in compound mice. Moreover, PTH increased Rankl and decreased Sost and Opg expression in ex vivo bone organ cultures established from WT mice, but only regulated Sost and Opg expression in cultures from DCR(-/-) mice. PTH also increased RANKL expression in osteocyte-containing primary cultures of calvarial cells, in isolated murine osteocytes, and in WT but not in DCR(-/-) osteocyte-enriched bones. Thus, PTH upregulates Rankl expression in osteocytes in vitro, ex vivo and in vivo, and resorption induced by PTH receptor signaling in the adult skeleton requires direct regulation of the Rankl gene in osteocytes.We thank Dr. Keith Condon and Ms. Naomie Olivos for technical assistance and Dr Munro Peacock for measurement of alkaline phosphatase. This research was supported by the National Institutes of Health (R01DK076007 and American Recovery and Reinvestment Act supplement S10-RR023710 to T.B.) and the Veterans Administration (Merit Review I01BX002104 to T.B.). Disclosure Summary: The authors declare that no conflict of interest exists

    Genetic Deletion of Sost or Pharmacological Inhibition of Sclerostin Prevent Multiple Myeloma-induced Bone Disease without Affecting Tumor Growth

    Get PDF
    Multiple myeloma (MM) causes lytic bone lesions due to increased bone resorption and concomitant marked suppression of bone formation. Sclerostin (Scl) levels, an osteocyte-derived inhibitor of Wnt/β-catenin signaling, are elevated in MM patient sera and are increased in osteocytes in MM-bearing mice. We show here that genetic deletion of Sost, the gene encoding Scl, prevented MM-induced bone disease in an immune-deficient mouse model of early MM, and that administration of anti-Scl antibody (Scl-Ab) increased bone mass and decreases osteolysis in immune-competent mice with established MM. Sost/Scl inhibition increased osteoblast numbers, stimulated new bone formation and decreased osteoclast number in MM-colonized bone. Further, Sost/Scl inhibition did not affect tumor growth in vivo or anti-myeloma drug efficacy in vitro. These results identify the osteocyte as a major contributor to the deleterious effects of MM in bone and osteocyte-derived Scl as a promising target for the treatment of established MM-induced bone disease. Further, Scl did not interfere with efficacy of chemotherapy for MM suggesting that combined treatment with anti-myeloma drugs and Scl-Ab should effectively control MM growth and bone disease, providing new avenues to effectively control MM and bone disease in patients with active MM
    corecore