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Abstract 

Osteocytes, the most abundant cells in bone, orchestrate the function of osteoblasts and osteocytes 

to control physiological bone homeostasis. Accumulating evidence demonstrates that alteration of 

osteocyte function underlies the pathophysiology of several skeletal disorders, and therapeutic 

targeting of factors produced by these cells improves skeletal health. Despite the advances in the 

knowledge of osteocyte biology, the contribution of these cells to the damaging effects of cancer 

in bone is practically unknown. Multiple myeloma is a plasma cell malignancy characterized by 

the presence of skeletal lesions and severe bone pain. Recent findings suggest that myeloma cells 

educate osteocytes to generate a microenvironment that is conducive to tumor progression, skeletal 

destruction, and bone pain. This review features some of these investigations and discusses the 

potential of targeting osteocytic pathways and osteocyte messengers for the treatment of multiple 

myeloma. 
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Introduction 

Multiple myeloma (MM) is a B-cell neoplasm characterized by the growth of monoclonal 

plasma cells in the bone marrow. This debilitating malignancy usually presents with 

overproduction of monoclonal immunoglobulins, severe bone pain, pathologic fractures, 

weakness, anemia, infection, hypercalcemia, spinal cord compression, or renal failure [1-3]. MM 

is the second most common hematologic malignancy in the United States, representing 1.4% of all 

new cancers, with around 30,000 new cases and 12,500 people dying of this disease in 2016, as 

estimated by The American Cancer Society (https://cancerstatisticscenter.cancer.org). MM is most 

frequently diagnosed among people aged 65-74, more common in men than women, and is twice 

as frequent among African American descendants as it is in other racial groups [4]. 

MM has the highest incidence of bone involvement among malignant diseases. Skeletal 

manifestations are the most prominent source of pain and have devastating clinical effects, 

increasing the morbidity of MM patients. It is estimated that about 70% of MM patients have 

evidence of skeletal lesions at diagnosis, and this percentage increases to 90% in patients with 

advanced disease [2]. Further, up to 60% of MM patients develop a pathological fracture during 

the course of the disease. Importantly, MM patients with pathologic fractures have a 20% increased 

risk of death [5]. MM bone disease (MMBD) is characterized by the development of focal skeletal 

lesions in areas close to active MM cells, while normal bone remodeling exists in bone areas 

without tumor involvement [6]. These localized osteolytic lesions result from exacerbated bone 

resorption and protracted suppression of new bone formation, due to the uncoupled and 

imbalanced activity of osteoblasts, bone-forming cells, and osteoclasts, bone-resorbing cells [7;8]. 

As a consequence, although these bone lesions stop progressing with anti-myeloma therapy, they 

rarely heal, even in patients in complete remission.  
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MM is highly dependent on the bone/bone marrow microenvironment, and interactions 

between tumor cells and other cells present in this compartment are considered an important 

pathogenic factor in MM [9-11]. Under physiological conditions, bone remodeling takes place in 

a balanced manner within structures known as ‘bone remodeling compartments’ (BRCs) [12-14]. 

The BRC is often disrupted in MM patients, thus allowing MM cells to establish close ties with 

cells present in the MM microenvironment [15]. These interactions are key for the growth and 

survival of MM cells and the progression of MMBD [1;8;10]. The contribution of tumor cells, 

osteoclasts, osteoblasts, stromal cells, and immune cells to tumor growth and MMBD is well 

known. However, there is little information about whether osteocytes, 95% of the cells present in 

bone and key regulators of bone homeostasis [16], contribute to the progression of myeloma and 

the associated bone disease. This review summarizes the current knowledge regarding the role of 

osteocytes in MM and examines the potential of targeting osteocytes and their derived factors as a 

novel therapeutic approach to treat MM. 

 

Osteocytes: key regulators of bone homeostasis. 

Osteocytes, the longest-lived of all bone cells, are fully differentiated osteoblasts that 

become entombed by matrix during the process of bone formation [17]. Although originally 

described as inactive quiescent cells, now we know that osteocytes actively control bone 

homeostasis [18;19]. Osteocytes have multiple cytoplasmic projections that run through canaliculi 

in the bone and connect them with other surrounding osteocytes and cells in the bone surface [17]. 

This canalicular system allows osteocytes to sense and transduce mechanical forces, as well as 

coordinate the function of osteoblasts and osteoclasts by mechanisms including direct cell-to-cell 

interaction and secretion of paracrine factors [16-20].  
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Osteocytes have a critical role in the regulation of bone formation by sending inhibitory 

signals that decrease the bone forming activity of osteoblasts. Osteocytes are major producers of 

antagonists of the Wnt/β-catenin signaling, a pathway that when activated increases bone mass 

mainly due to increased osteoblast survival and bone formation, but also inhibits 

osteoclastogenesis by upregulating the expression of osteoprotegerin (OPG) in osteoblasts and 

osteocytes [21]. Wnt proteins bind to Frizzled receptors and to the co-receptors low-density 

lipoprotein receptor-related protein (LRP) 5 or 6, to stabilize β-catenin protein and activate the 

transcription of target genes involved in osteoblasts differentiation, survival, and matrix synthesis. 

Osteocytes secrete Dickkopf-related protein 1 (DKK-1) and Sclerostin, the product of the gene 

SOST, to compete with Wnt ligands to bind to LRP 5 and 6, thus preventing Wnt signaling 

activation and slowing bone formation by osteoblasts [22-24]. Consistent with the osteo-anabaolic 

effects of canonical Wnt signaling, genetic and pharmacologic inhibition of DKK-1 or 

Sost/Sclerostin, in both humans and preclinical models, increases bone mass largely due to 

increased bone formation, with a component of decreased bone resorption [25-30]. However, 

activation of this pathway in osteoblasts induces bone gain due to a reduction in bone resorption 

[31]. In contrast, our group has recently demonstrated that the bone gain induced by  activation of 

Wnt/β-catenin signaling in osteocytes is due to increased bone formation [32]. These results 

suggest that, in addition to the paracrine effects of these inhibitors in osteoblasts and osteoclasts, 

they might also have autocrine effects in osteocytes. 

Osteocytes also control bone resorption by producing and secreting pro- and anti-

osteoclastogenic cytokines. In the adult skeleton, osteocytes are the main source of the Receptor 

activator of nuclear factor kappa-B ligand (RANKL), a cytokine essential for osteoclast 

differentiation and survival [33-35]. Osteocytes also express OPG, a soluble decoy that blocks the 
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binding of RANKL to its receptor, receptor activator of nuclear factor kappa-B (RANK) [36]. OPG 

is a Wnt target gene, thus osteocyte-mediated modulation of Wnt/β-catenin signaling can also 

impact bone resorption [31;37]. Further, emerging evidence supports that Sclerostin, in a Wnt 

signaling independent fashion, can also modulate the expression of RANKL in osteocytes 

[22;32;38].  

Osteocyte death is often accompanied by increased osteoclastogenesis in nearby bone, and 

osteocyte apoptosis is temporally and spatially associated with local osteoclastic resorption in 

several mouse models [19;39;40].  This evidence supports that apoptotic osteocytes trigger a 

cascade of events that directs osteoclasts to particular areas of the skeleton, starting a process 

known as “targeted” bone remodeling. Although the mechanism(s) underlying targeted 

remodeling are incompletely understood, it has been shown that apoptotic osteocytes express 

higher levels of RANKL (or stimulate the expression of this gene in surrounding osteocytes), 

release ATP, as well as other factors that could mediate the recruitment and differentiation of 

osteoclast precursors [41-45]. 

Our understanding of the function of osteocytes as regulators of bone homeostasis has 

increased greatly in the last two decades. Now we have extensive evidence demonstrating that   

genetic mutations in osteocytic genes have dramatic effects in the human skeleton [21;46], and 

that dysregulation of osteocyte function and alteration of osteocyte lifespan underlies the 

pathophysiology of several skeletal disorders [18]. As a result, several therapeutic approaches that 

target osteocytes and their messengers have been recently developed and shown beneficial skeletal 

outcomes in osteoporotic patients [17;18;22], demonstrating that osteocytes are a valuable target 

to combat bone diseases. 

 



8 
 

Osteocytes and the multiple myeloma microenvironment.  

 The contribution of osteocytes to cancer in bone, and in particular to MM, is just starting 

to emerge. Over the last years accumulating evidence supports that myeloma cells use osteocytes 

to their advantage to generate a microenvironment that is conducive to tumor growth, skeletal 

destruction, and bone pain (Figure 1).  

First evidence suggesting a potential role of osteocytes in myeloma was provided by 

Giuliani and colleagues, who found more apoptotic osteocytes in MM patients compared to healthy 

subjects or patients with monoclonal gammopathy of undetermined significance (MGUS) [47]. 

Consistent with this finding, we recently reported in a murine model of myeloma that the number 

of apoptotic osteocytes is increased in bone areas infiltrated with myeloma cells [48]. Mechanistic 

studies demonstrated that cell-to-cell interaction between osteocytes and myeloma cells, as well 

as myeloma-derived factors, are responsible for the decrease in osteocyte viability in the MM 

microenvironment [48]. Physical interactions between myeloma cells and osteocytes activate 

Notch signaling in osteocytes, a pathway that regulates proliferation and programmed cell death 

in several cell types [49], triggering caspase-3 mediated apoptosis [48]. In addition, accumulation 

of tumor necrosis factor α (TNFα) secreted by myeloma cells sustains/amplifies osteocyte 

apoptosis, a second mechanism by which these cancer cells shorten the lifespan of osteocytes [48]. 

Recent findings suggest that myeloma cells can also stimulate osteocyte apoptosis by inducing 

autophagy [50], a tightly regulated process of self-degradation that protects from oxidative stress 

stimuli or aging [51].  

Consistent with the role of apoptotic osteocytes in targeting bone resorption to particular 

areas of the bone in other skeletal diseases [39;40], Giuliani and colleagues found a positive 

correlation between death osteocytes and the number of osteoclasts in bone samples from myeloma 
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patients [47]. Further, in vitro experiments performed in our laboratory showed that apoptosis 

enhances the ability of osteocytes to attract osteoclast precursors, and increases the expression of 

RANKL to stimulate osteoclastogenesis [47;48]. It is also possible that other factors released by 

osteocytes, such as interleukin (IL)-11, play a role in the increased resorption that accompanies 

the growth of myeloma cells in the bone/bone marrow [47]. Taken together, these results support 

that osteocytes, and in particular apoptotic osteocytes, contribute to the exaggerated bone 

resorption in MM. 

Not only osteocyte viability, but also osteocytic gene expression is altered in MM. 

Osteocytes overproduce Sost/Sclerostin in MM-colonized bones, leading to Wnt signaling 

inhibition and subsequently impairing osteoblast differentiation [48]. These data support that 

osteocytes also participate in the suppression of osteoblast differentiation and new bone formation 

by increasing the levels of Sclerostin in the microenvironment. In addition, the expression of the 

Wnt target gene OPG is also decreased in osteocytes exposed to myeloma cells, thus increasing 

even further the RANKL/OPG and their osteoclastogenic potential [48]. Moreover, the Notch 

receptor repertoire of osteocytes is altered in bones with MM involvement, with Notch receptor 3 

(NOTCH R3) rapidly increasing upon interaction with myeloma cells [48]. 

Osteocytes also seem to fuel the growth of myeloma cells by direct and indirect 

mechanisms. We recently showed that direct cell-to-cell contact with osteocytes reciprocally 

activates Notch signaling in myeloma cells to stimulate tumor growth [48]. Autocrine and 

paracrine [interactions with stromal cells] activation of Notch signaling through the Notch receptor 

1 and 2 stimulates the proliferation of myeloma cells [52-55]. However, we found that the 

expression of NOTCH R3 and 4 in myeloma cells is markedly increased and induced, respectively, 

upon physical contact with osteocytes [48]. These results suggest that bidirectional communication 
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between osteocytes and myeloma cells stimulates the proliferation of myeloma cells via NOTCH 

R3 and/or R4 signaling. Further, because apoptotic osteocytes increase bone resorption, it is 

possible that these cells enhanced tumor growth driven by factors released due to osteoclastic 

resorption. Moreover, fibroblast growth factor 23 (FGF23) produced by osteocytes induces 

myeloma proliferation by binding to FGF23 receptors and the co-receptor Klotho in myeloma cells 

[56]. Recent findings suggest that adipocytes support the proliferation and dissemination of MM 

[57;58]. Activation of Wnt signaling favors mesenchymal stromal cell differentiation to 

osteoblasts, and blocks adipogenic differentiation [21], while Sclerostin-mediated inhibition of this 

pathway stimulates adipocyte differentiation in vitro and in vivo [59-61]. Thus, it is possible that 

osteocyte-secreted Sclerostin stimulates the differentiation of mesenchymal precursors towards the 

adipogeneic lineage, and therefore support myeloma growth [62].  

Bone pain is one of the most common complications in MM and a major cause of morbidity 

and diminished quality of life. The mechanisms responsible for MM-induced bone pain are poorly 

understood, but may include interactions between myeloma cells, bone cells, and peripheral nerves 

[63]. Recent data suggest that osteocytes can communicate with sensory nerves and potentially 

play an important role in MM-induced bone pain [64]. In vivo, osteocyte physically interact with 

sensory nerves, and in vitro studies show that osteocytes induce neurite sprouting and sensory 

nerve excitation [64]. Communication between osteocytes and sensory nerves appears to be 

mediated by gap junctions. Treatment with GAP27, a selective gap junction blocker, suppresses 

MM-induced bone pain in vivo. More importantly, bone pain induced by myeloma is reduced in 

mice lacking connexin 43 (Cx43) in osteocytes compared to control mice [64]. Taken together, 

these results demonstrate that osteocyte and sensory nerves are in intimate physical contact in 
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bone, and that they exchange small molecules via Cx43 to induce sensory nerve excitation and 

bone pain. 

 

Osteocytes as targets for the treatment of multiple myeloma.  

Recent advances in the treatment of MM have increased patient survival [1]. Yet, current 

available anti-myeloma regimens have minor effects on bone repair [65]. Bisphosphonates, a class 

of drugs that prevent bone loss but suppress bone remodeling, are the mainstay of therapy to treat 

MMBD [66]. In addition, glucocorticoids [GC] are a frequent component of MM treatment in 

combination with proteasome inhibitors and/or immunomodulatory drugs [67-69]. However, GC 

cause bone loss, by increasing bone resorption and reducing formation, and also induce muscle 

atrophy [70;71]. GC, similar to myeloma cells, exert their bone effects, in part, by inducing 

osteocyte apoptosis, which in turn stimulates resorption, and increasing the expression of 

Sost/Sclerostin to inhibit bone formation [71;72]. Therefore, MM patients live longer but continue 

to suffer from increasingly devastating skeletal sequelae. Thus, new therapeutic regimens that 

simultaneously decrease tumor progression and improve MMBD are sorely needed.   

New evidence suggest that targeting osteocyte-myeloma cell interactions represents a 

promising treatment strategy for the treatment of MMBD, as well as potentially suppress myeloma 

growth. The Notch signaling pathway has gained growing interest in the recent years because of 

the dysregulation of several Notch components in myeloma cells and its role in several aspects of 

the disease [73;74]. The most widely drugs used to block Notch signaling are inhibitors of the 

gamma-secretase (GSIs), a complex responsible for the cleavage of the intracellular domain of the 

Notch receptors [75;76]. Our in vitro data suggests that GSIs could protect osteocytes from 
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apoptosis induced by myeloma cells, thus preventing osteoclast recruitment, as well as decrease 

osteocyte stimulation of myeloma proliferation [48]. However, GSIs have significant toxicity and 

cause several adverse events, among others gut toxicity and skin disorders [73;74]. Thus, targeting 

specific components of the Notch pathway has become an attractive approach to avoid the off-

target effects of GSIs. In this regard, neutralizing antibodies have been generated to block the 

Notch ligands Delta-1 and Jagged-1 [73;74], which are currently being studied in preclinical 

models. The studies on osteocytes mentioned above suggest that pharmacological inhibition of 

specific Notch receptors, in particular NOTCH R3 and 4, may also represent a promising treatment 

strategy in MM. Future studies to investigate this possibility and to identify relevant Notch 

ligands/receptors on osteocytes and myeloma cells are warranted. 

Sclerostin and DKK-1 levels are elevated in the sera of MM patients and correlate with 

reduced osteoblast function and poor patient survival [77-79], suggesting that these Wnt 

antagonists contribute to and may be a therapeutic target for the treatment of MMBD. DKK1 is 

expressed by myeloma cells, as well as by osteocytes, and DKK-1-neutralizing antibodies abolish 

suppression of osteoblastogenesis and have variable effects on myeloma growth [79;80].  

Similarly, recent data from our laboratory show that genetic deletion of Sost prevents MM-induced 

bone loss in a mouse model that recapitulates the early course of MM [81]. More importantly, we 

found that treatment with Scl-Ab reduced osteolysis and increased cancellous bone volume in 

immunocompetent mice in the late stages of MM [81]. Further, we showed that inhibition of 

Sost/Sclerostin did not alter MM cell growth in vivo or in vitro, and preserved the efficacy of anti-

myeloma drugs in vitro [81]. Consistent with these findings, Scl-Ab administration shortly after 

injection of myeloma cells also prevented the decrease in cancellous bone mass in the early course 

of MM, with no effects on tumor burden [78;82]. These results demonstrate that overproduction 
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of Sclerostin by osteocytes contributes to MMBD and suggest that combination of Scl-Ab with 

anti-tumor drugs represents a potential therapeutic approach to simultaneously decrease myeloma 

progression and improve MMBD.  

Actions on osteocytes could also mediate some of the beneficial effects observed with 

drugs used to treat MM. Soluble RANKL levels are elevated in the sera of MM patients and 

positively correlate with disease activity [83]. RANKL neutralization delays myeloma progression 

in mice [84], and reduces bone resorption in myeloma patients [85]. Several cells present in the 

MM microenvironment express RANKL, including osteocytes, which are considered the major 

source of this molecule in adult bone [34]. Although the specific contribution of osteocyte-derived 

RANKL to the increased osteolysis in MM remains to be determined, it is possible that some of 

the beneficial effects observed with monoclonal antibodies against RANKL derived from 

neutralization of osteocytic RANKL. The use of proteasome inhibitors has emerged as an 

important therapeutic strategy for the treatment of MM [3]. Bortezomib is currently approved for 

the treatment of myeloma and improves MMBD through actions on osteoblasts [86-88]. 

Bortezomib induces mitochondrial injury and apoptosis in myeloma cells, but also inhibits MM-

induced osteocyte autophagy, suggesting that osteocytes are also direct targets of this drug [50]. 

Therefore some of the clinical benefits observed with Bortezomib therapy could arise from a 

preservation of osteocyte viability.  

  

Conclusions and future directions. 

Advances over the last years provided clear evidence that osteocytes are part of the MM 

microenvironment and contribute to the deleterious effects of myeloma cells in the skeleton. Now 
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we know that myeloma cells instruct osteocytes to support tumor proliferation, increase bone 

resorption and suppress bone formation, and that in bones bearing myeloma osteocytes stimulate 

sensory nerves to promote bone pain. Importantly, new evidence suggests that osteocytes could 

also participate in the growth of other cancers in bone [89;90]. The discovery of some of the 

pathways and molecular messengers altered in osteocytes present in the cancer niche has the 

potential to guide the development of new therapeutic regimens for the treatment of myeloma and 

the associated bone disease, and eventually other cancers. Future investigations are warranted to 

reveal the specific contribution of osteocytes to the progression of cancer in bone, and to identify 

new osteocytic molecules and mechanisms that can be exploited for the management of cancer in 

bone.   
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Figure captions 

Figure 1. Osteocytes contribute to generate a microenvironment that is conducive to tumor 

growth, skeletal destruction, and bone pain. In MM-colonized bone, physical communication 

between osteocytes and myeloma cells activates bidirectional Notch signaling, resulting in 

osteocyte apoptosis and increased myeloma proliferation. Apoptotic osteocytes express RANKL 

to target osteoclasts to the area and initiate bone resorption. In addition, myeloma cells produced 

DKK-1 and reprogram osteocytes to overproduce Sclerostin, which in turn decreases Wnt 

signaling, resulting in the downregulation of OPG expression and inhibition of osteoblast 

differentiation. Further, osteocytes, via Cx43, exchange factors with sensory nerves to induce 

sensory nerve excitation and bone pain. 
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