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Abstract 

Purpose of review 

This review provides a summary of the current knowledge on Sost/sclerostin in cancers targeting bone, discusses 

novel observations regarding its potential as a therapeutic approach to treat cancer-induced bone loss, and proposes 

future research needed to fully understand the potential of therapeutic approaches that modulate sclerostin function. 

Recent findings 

Accumulating evidence shows that sclerostin expression is dysregulated in a number of cancers that target bone. 

Further, new findings demonstrate that pharmacological inhibition of sclerostin in preclinical models of multiple 

myeloma results in a robust prevention of bone loss and preservation of bone strength, without apparent effects on 

tumor growth. These data raise the possibility of targeting sclerostin for the treatment of cancer patients with bone 

metastasis.  

Summary 

 Sclerostin is emerging as a valuable target to prevent the bone destruction that accompanies the growth of cancer 

cells in bone. Further studies will focus on combining anti-sclerostin therapy with tumor targeted agents to achieve 

both beneficial skeletal outcomes and inhibition of tumor progression. 
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Introduction 

Bone is a frequent and preferred site for cancer metastases and cancer involvement. Up to 70% of patients 

with advanced breast or prostate cancer present with bone metastasis, and over 90% of patients with multiple 

myeloma develop osteolytic bone lesions. Upon dissociation from the primary tumor, metastatic cells populate the 

highly vascularized environment of the bone marrow with a strong affinity. Once bone is colonized, tumor cells in 

bone may start to grow immediately or survive in a dormant state until activated to initiate tumor formation [1]. The 

exponential growth of tumor cells in bone disrupts normal bone remodeling driving local bone destruction, induces 

severe pain, and increases fracture rates dramatically, thereby increasing mortality and reducing the likelihood for 

disease remission [2].  

Current research in bone metastasis aims to develop a greater understanding of the interactions between 

tumor cells and the cells of the bone marrow environment. The bone microenvironment controls tumor cell 

dormancy and regulates tumor cell activation through osteoclastic bone resorption during both disease initiation and 

recurrence [3-6]. In addition, interaction of cancer cells with different cell types in the bone microenvironment 

induces the secretion of multiple cytokines that stimulate bone resorption and fuel tumor growth [7-9]. Although less 

well explored, alterations in bone formation act in concert with altered bone resorption in response to the presence of 

cancer cells in bone, particularly in multiple myeloma [10-12]. Moreover, interactions with stromal cells promote 

growth, invasion, and metastasis [13]. Hence, we have compelling evidence that interactions between tumor cells 

and osteoblasts, osteoclasts, and stromal cells present in the bone marrow microenvironment influence tumor 

behavior and contribute to the development of osteolytic lesions [3;14-16]. 

Recently, attention has turned to the role of osteocytes in the tumor microenvironment. Osteocytes are the 

most abundant and long-lived cells in bone and are master regulators of bone remodeling [17-19]. Accumulating 

data supports that osteocyte function and life span are altered in bones colonized by cancer cells and that osteocytes 

favor tumor progression and bone destruction [17;20]. Further, the expression of the osteocyte-derived factor 

sclerostin, a potent inhibitor of bone formation, is increased in a number of cancers that target the skeleton [21-26], 

suggesting that this protein could play a part in the inhibition of bone formation that accompanies the growth of 

cancer cells in bone. In this review, we provide a summary of the role of sclerostin in cancer-induced bone disease 
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and the potential of using neutralizing antibodies against sclerostin as novel therapeutic approach to improve 

outcomes, quality of life, and survival in cancer patients. 

1. Sost/sclerostin: a negative regulator of bone mass and much more 

Sclerostin, encoded by the gene Sost, was first identified through genetic linkage analyses in sclerosteosis 

and van Buchem’s disease patients [27;28]. Mutations in the Sost gene observed in these patients result in absence 

of sclerostin expression or secretion, leading to high bone mass due to exaggerated bone formation [29;30]. 

Numerous studies followed this discovery, unravelling the numerous mechanisms of action of Sost/sclerostin in 

regulating bone mass (Fig. 1) [31]. In rodents, genetic deletion of Sost/sclerostin results in a progressive and 

generalized increase in bone mass due to increases in the number and bone-forming activity of osteoblasts [32]. In 

contrast, sclerostin overexpression reduces bone formation and bone mass in mice [33-35]. Mechanistic studies 

demonstrated that sclerostin acts as an extracellular inhibitor of canonical Wnt signaling. Assisted by LDL receptor 

related protein (LRP) 4, sclerostin binds to LRP5 and LRP6, and antagonizes downstream Wnt/β-catenin signaling 

[36;37], a pathway that stimulates bone formation and negatively regulates bone resorption to enable bone 

acquisition and maintain bone homeostasis. These findings led to the hypothesis that inhibition of sclerostin might 

restore bone mass and strength in the osteoporotic skeleton. Amgen (romosozumab), Eli Lilly (blosozumab), and 

Novartis (BPS804) guided the development of neutralizing antibodies to therapeutically target sclerostin, which 

resulted in a vast array of animal and human clinical studies demonstrating the ability of anti-sclerostin antibodies to 

stimulate bone formation and increase bone mass and strength (discussed in section 4).  

In the last years, there has been an expansion of our knowledge of the actions of sclerostin in both skeletal 

and non-skeletal tissues. Although osteoblasts are the main target cells for sclerostin in bone, it has become apparent 

that anti-sclerostin antibodies also decrease bone resorption (Fig. 1), suggesting that sclerostin also regulates the 

differentiation and function of osteoclasts [38]. In this line, sclerostin-mediated inhibition of Wnt/β-catenin 

signaling leads to a reduction in osteoprotegerin (Opg) expression in osteoblasts and osteocytes, a soluble decoy for 

the master regulator of osteoclastogensis termed receptor activator of nuclear factor kappa-B ligand (Rankl), with 

consequent increases in osteoclastic resorption [39-41]. Overexpression of Sost/sclerostin also increases the 

expression of Rankl in bone [35;42]. Further, constitutive activation of Wnt/β-catenin signaling in osteocytes also 

increases Rankl expression [42], an effect driven by sclerostin production [42]. Moreover, addition of recombinant 
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sclerostin to cultures of MLO-Y4 osteocytic cells is sufficient to upregulate Rankl and enhance osteocyte-induced 

osteoclast formation in vitro [43]. Recent findings suggest that sclerostin could also play a part in the regulation of 

adipocyte differentiation and/or fat production (Fig. 1). Sclerostin induces adipogenesis through inhibition of Wnt 

signaling in pre-adipocytes in vitro, and genetic and pharmacological inhibition of sclerostin in vivo decreases bone 

marrow adipose tissue formation [44-48]. Further, increased sclerostin in the circulation results in a progressive loss 

of white adipose tissue in gonadal and inguinal stores, an effect associated with decreased white adipocyte markers, 

increased beige adipocytes, and reduced canonical Wnt/β-catenin signaling in these fat depots [49]. Finally, 

neutralization of sclerostin stimulates the conversion of bone lining cells into active osteoblasts [50], supporting the 

notion that sclerostin can regulate the pool of quiescent bone lining cells in bone (Fig. 1). Altogether, these findings 

indicate that sclerostin can target different cells in the bone marrow microenvironment. In addition, similar to other 

factors secreted by osteocytes/osteoblasts, these results suggest that sclerostin has an endocrine metabolic action 

complementary to its function in bone. Further investigation is warranted to determine the importance of circulating 

sclerostin levels and their impact in non-skeletal tissues.  

Despite our increased knowledge in Sost/sclerostin biology, the specific mechanisms by which this gene is 

regulated remain as an outstanding unresolved issue. Sclerostin expression is mainly detected in osteocytes, 

osteocytic lacunae, and along osteocytic canaliculi, indicating that Sost/sclerostin is expressed by mature osteocytes, 

but not by early osteocytes or osteoblasts [51]. It is important to note that recent evidence suggests that other cells in 

the bone marrow microenvironment might also express Sost/sclerostin, particularly during development or under 

pathological conditions [26;52-63]. Yet, whether sclerostin produced by other cells than osteocytes contributes to 

the skeletal effects attributed to this protein is unclear. The regulation of Sost/sclerostin expression is complex and 

requires coordination of multiple mechanisms to control sclerostin production in a time and cell-context manner. 

The first regulatory sequence in the Sost gene was identified in van Buchem patients, which present a homozygous 

deletion of a 52-kb noncoding located ∼35 kb downstream of the Sost transcription start site [34;64]. This sequence 

contains an enhancer element essential for Sost expression, the evolutionarily conserved region 5 (ECR5). The 

ECR5 has response elements for the myocyte enhancer factor-2 (Mef2c), a transcription factor that upon binding to 

ECR5 stimulates Sost mRNA expression [65;66]. Also, epigenetic modifications in the Sost proximal promoter 

(~1.4Kb upstream the SOST gene), in particular DNA methylation, are responsible for the repression of 

Sost/Sclerostin expression in osteoblastic cells, and elimination of DNA methyl marks during osteoblast-osteocyte 
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transition enables the expression of this gene in osteocytes [67;68]. Further, several hormonal stimuli and 

transcription factors that bind to regulatory regions of the Sost gene and control its transcription have been 

identified, including parathyroid hormone [65;69-71], transforming growth factor beta and activin-A [72], bone 

morphogenetic proteins [72-74], tumor necrosis factor alpha and Tnf-related weak inducer of apoptosis [75], and 

more recently osteoclast-derived leukemia inhibitory factor [76]. Future research efforts should focus on 

understanding the interplay between the different epigenetic marks and transcription factors, and identifying the 

specific regulatory mechanisms that lead to the dysregulation of sclerostin expression in bone pathologies, including 

those caused by cancer. 

2. Sost/sclerostin in other bone tumors and cancers that metastasize to bone 

The contribution of osteocytes and their derived factors to cancer-induced bone disease is an emerging area 

of research [77]. Autophagic/apoptotic osteocytes are increased in bone areas infiltrated with myeloma cells [78-80], 

and reciprocal interactions between myeloma cells and osteocytes alter osteocyte viability and stimulate 

proliferation in myeloma cells. Also, recent data show that osteocytes can communicate with sensory nerves and 

contribute to myeloma-induced bone pain [81], one of the most common symptoms of multiple myeloma. In 

response to increased intraosseous pressure resulting from the growth of prostate cancer cells in the bone marrow, 

osteocytes produce chemokine (C-C motif) ligand 5, which in turn stimulates the synthesis of matrix 

metalloproteinases to favor the growth and invasion of prostate cancer cells into bone [20]. Further, recent findings 

suggest that osteocytes, in addition to osteoblasts, may act as a cell of origin for osteosarcoma [82]. Together, these 

data support a role for osteocytes in providing a microenvironment that is conducive to tumor growth and the 

subsequent skeletal destruction and bone pain.  

Key to osteocyte regulation of bone response to cancer cell colonization is the osteocyte-derived protein 

sclerostin. The expression of sclerostin has been assessed both at bone tissue level and systemically in the 

circulation in a number of cancers that target bone [83], with some conflicting data. In a small cohort of patients, 

circulating sclerostin levels were higher in postmenopausal women with endocrine-responsive breast cancer 

compared to those in the premenopausal group, and serum sclerostin increased after treatment with aromatase 

inhibitors [21;22]. Further, MDA-MB-231 breast cancer cells secrete sclerostin to inhibit osteoblast differentiation 

through a mechanism dependent on both Runx2 and CBFβ [84]. Circulating sclerostin levels are also significantly 
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increased in patients with prostate cancer, particularly in those receiving androgen deprivation therapy [23;24]. 

Sclerostin levels remained unaltered however in renal cell carcinoma patients with osteolytic metastases or patients 

with indolent systemic mastocytosis [85;86]. It is important to note that sclerostin expression in bone does not 

always correlate with sclerostin levels in the circulation [87;88]. Indeed, in contrast to clinical studies, preclinical 

experiments in rodents show that sclerostin has the potential to inhibit prostate cancer invasion and to reduce the 

incidence of metastases and bone destruction [89;90]. Thus, evaluation of sclerostin at the tissue level is required to 

determine the levels of this protein in bone and properly assess its potential contribution to the effects of cancer in 

bone. Nevertheless, these results suggest that the regulation and function of sclerostin may differ among cancers that 

target bone. Therefore, combinations of clinical measurements of sclerostin with data from animal models are 

essential to predict the clinical outcome of targeting sclerostin in different bone destructive cancers. 

3. Sost/sclerostin dysregulation in multiple myeloma 

Elevated sclerostin expression has been implicated in the pathogenesis of bone loss in patients with 

myeloma, with a number of clinical investigations showing increased serum sclerostin levels in myeloma patient 

samples compared to healthy subjects or MGUS patients [25;26]. Increased levels of Sost mRNA were found in 

plasma cells isolated from small cohorts of patients with myeloma [62;63;91], suggesting that myeloma cells are the 

main source of sclerostin. However, in a more recent study including over 630 myeloma patients, bone marrow 

plasma cell Sost mRNA was not different to healthy controls, nor was it detected in 56 human or murine myeloma 

cells lines [92], suggesting elevated serum levels of sclerostin were driven by another source. Indeed when sclerostin 

plasma concentrations were compared with Sost mRNA and sclerostin protein expression in bone marrow 

mesenchymal stromal cells and osteocytes, a strong correlation was demonstrated [26], indicating that bone cells are 

mainly responsible for the increased serum sclerostin levels detected in patients with myeloma. Supporting this 

notion, in vitro experiments show that physical interactions with myeloma cells increase Sost mRNA expression in 

osteocytes, and the number of osteocytes expressing sclerostin doubled in bones bearing myeloma cells versus 

healthy controls [79;92;93]. These results led many to hypothesize that elevated sclerostin levels in the bone/bone 

marrow microenvironment are causal of the suppressed bone formation induced by myeloma, and positioned 

sclerostin as a bone specific targetable candidate to promote bone formation and overcome bone loss in patients with 

myeloma.  
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4. Sost/Sclerostin as a therapeutic tool to prevent cancer induced bone loss 

Due to the devastating consequences of tumor cell metastasis and myeloma cell expansion in bone, 

extensive pre-clinical and clinical research has led to the clinical use of bone targeted therapies, such as the anti-

resorptive agents bisphosphonates and denosumab, to prevent bone destruction [94]. Besides stopping tumor-

induced skeletal destruction, anti-resorptive therapies can also maintain tumor cells in a dormant state in bone, thus 

preventing their re-activation and subsequent disease recurrence [3]. Thus, anti-resorptives are considered the 

mainstay therapy for cancer patients with bone involvement. However, although anti-resorptive therapy is effective 

at preventing further bone loss, it cannot rebuild lost bone, and therefore fractures still occur in patients with 

myeloma and metastatic bone disease, even during remission. Thus, anabolic therapies that increase osteoblast 

activity and stimulate new bone formation are required to help restore bone structure and strength in cancer patients.  

Sclerostin is now recognized as a target for the treatment of osteoporotic bone loss. Neutralizing antibodies 

to sclerostin have shown beneficial outcomes for bone mass and structure in preclinical studies in rodents, and have 

shown potent skeletal anabolic effects, with increases in bone strength and fracture risk reduction in phase II and III 

clinical trials for the management of osteoporosis [95-98]. Mechanistically, anti-sclerostin therapy uncouples bone 

formation from bone resorption, by stimulating osteoblast function while decreasing osteoclast function. These 

findings have attracted recent attention in the field of cancer, and in particular multiple myeloma [26;92;93], as a 

potential new avenue for rebuilding lost bone and preventing fractures in patients with bone destructive cancers. 

Administration of anti-sclerostin antibodies increased bone volume in immunocompromised mice bearing 

MM1.S human xenograft cells [26]. Although bone loss compared to naïve control mice in response to MM1.S cells 

was not demonstrated in this study, anti-sclerostin antibodies increased cancellous bone volume and trabecular 

thickness in the vertebrae. The circulating levels of the bone formation marker P1NP were elevated by anti-

sclerostin treatment, suggesting that stimulation of bone formation was responsible for the increased bone volume. 

More recently, both genetic deletion of Sost and pharmacologic inhibition with anti-sclerostin antibodies showed 

significant protection from myeloma-induced bone loss [92;93]. Immunocompetent mice bearing 5TGM1 or 

5T2MM cells, and immunocompromised mice bearing human MM1.S cells showed significant trabecular bone loss 

compared to naïve controls mice. Anti-sclerostin treatment prevented this bone loss, normalizing bone volume to 

naïve control levels, through increasing bone formation without altering bone resorption parameters [92]. Further, 
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the development of osteolytic lesions, characteristic of the 5T2MM model, was also prevented with anti-sclerostin 

treatment, possibly via correcting the myeloma-induced dysregulation of coupling between bone resorption and 

formation. Importantly, anti-sclerostin-driven protection from bone loss also prevented the decrease in bone strength 

in mice bearing myeloma, suggesting that anti-sclerostin treatment may prevent myeloma-induced fractures. 

Noteworthy, anti-sclerostin treatment provided additive protection from 5TGM1-induced bone loss and 

compromised bone strength when combined with the anti-resorptive agent zoledronic acid [92]. 

Immunocompromised mice carrying a homozygous deletion of Sost were also protected from bone loss and the 

development of osteolytic lesions induced by human JJN3 myeloma cells through preservation of bone formation 

and a modest inhibition of bone resorption [93]. Remarkably, in the same study, administration of anti-sclerostin to 

mice with established/active myeloma disease, protected from trabecular bone loss and osteolytic lesions and 

demonstrated that anti-sclerostin stimulates new bone formation and reduces osteoclast numbers in areas colonized 

by myeloma cells. In concert, these results demonstrate that anti-sclerostin protects from myeloma-induced bone 

loss by primarily stimulating bone anabolism, with modest or undetectable effects on resorption, and support that 

combined therapeutic approaches targeting both bone suppression of anabolism and increased catabolism may 

provide optimal outcomes for myeloma-induced bone disease (Fig. 2).  

Before clinical applications of anti-sclerostin antibody treatment can be considered in myeloma however, 

consideration must be given to the possible impact of stimulating Wnt signaling on tumor growth. Inhibiting a 

soluble Wnt antagonist may increase local Wnt signaling and promote tumor growth [99]. Whilst Wnt signaling 

stimulation of myeloma cell proliferation has been demonstrated in vitro [100], anti-sclerostin antibody treatment 

had no effect on skeletal and extra-skeletal myeloma burden across all models described above [26;92;93]. Also, 

anti-sclerostin did not alter the anti-myeloma activity of the proteasome inhibitor carfilzomib in vivo [26] or impact 

myeloma cell proliferation in vitro, either in the presence or absence of chemotherapeutic agents [92;93]. These 

findings suggest that sclerostin does not regulate pathways that control tumor growth, and open the possibility of 

combining anti-sclerostin therapy with chemotherapeutic drugs to achieve both beneficial skeletal outcomes and 

inhibition of tumor progression.  

It is important to mention that sclerostin is not the only Wnt inhibitor elevated in patients with myeloma or 

bone metastasis. Suppression of osteoblast differentiation through TGF-β signaling and Dkk-1 has also been 



11 
 

implicated in bone lesions caused by breast cancer bone metastases [101-103]. Also, Dkk1 and SFRP3 mRNA 

expression was markedly elevated in bone marrow biopsies of 65 patients with myeloma with either absent or overt 

lytic bone disease [104]. In preclinical models, anti-Dkk1 successfully prevented myeloma-induced bone disease 

and had variable effects on tumor burden leading to early clinical trials [105-107]. These agents have not however 

succeeded to reach the clinic, possibly due to an inadequate bone anabolic capacity of the agents or the 

heterogeneous response of patients [92]. In a recent study, a bispecific antibody inhibiting both sclerostin and Dkk-1 

was generated. Dual inhibition of sclerostin and Dkk-1 resulted in greater increases in bone formation and showed 

superior bone repair activity when compared to inhibition of each of the Wnt antagonists alone in animal models of 

osteoporosis [108]. Further investigation is needed to determine whether dual inhibition of Dkk-1 and sclerostin is 

also anabolic in bones colonized by cancer cells, has effects on tumor growth, and prevents fractures to a degree that 

exceeds that achieved with Wnt antagonist inhibitor monotherapy. 

Conclusions and future directions 

The discovery of sclerostin and its impact on the skeleton opened a new area in bone therapeutics. 

Recent results show that sclerostin production is elevated in bones colonized by cancer cells, raising the possibility 

of targeting sclerostin for the treatment of bone-destructive cancers. Recent animal studies demonstrate that 

pharmacological inhibition of sclerostin prevents bone loss and stimulates new bone formation in preclinical models 

of multiple myeloma. Anti-sclerostin antibodies also robustly enhance normal and compromised fracture repair and 

importantly increase BMP-driven repair of critical size defects [108-114]. Consistent with the anti-fracture 

properties of anti-sclerostin [96], pharmacological inhibition of sclerostin, either alone or in combination with 

zolendronic acid, prevents the decline in resistance to fracture in bones bearing myeloma and, in some instances, 

increased strength above naïve controls [92]. These findings support that anti-sclerostin has the potential to not only 

prevent bone loss and fractures, but rebuild lost bone and heal osteolytic lesions. Further investigations are required 

to ascertain whether anti-sclerostin could in fact repair lytic lesions; however, this is an exciting opportunity to 

dramatically improve outcomes in patients with established disease or those in remission. Future studies should also 

aim to identify the exact source of sclerostin and the mechanism(s) underlying its aberrant production in the setting 

of bone cancers. Also, the ability of anti-sclerostin antibodies to promote bone formation in other cancers that target 

bone warrants further investigation. The recent findings showing that adipocytes appear to affect different aspects of 
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tumor cell biology [16;115-118], together with the new evidence that anti-sclerostin therapy decreases the number of 

adipocytes in the marrow [48], raise the possibility that sclerostin could play a part in the increased marrow 

adiposity observed in myeloma and others cancers in bone, and therefore demand further investigation. Finally, 

although preliminary, the new evidence showing that anti-sclerostin therapy does not alter tumor growth or the anti-

tumor activity of chemotherapeutic drugs provides new avenues to simultaneously improve bone disease and 

decrease tumor burden in patients with cancer in bone. In conclusion, the current in vitro and in vivo data support the 

therapeutic targeting of sclerostin to prevent bone loss, stimulate new bone formation, and reduce the risk of 

fractures in patients with cancer in bone. These results may lead to the clinical investigation of the effects of anti-

sclerostin therapy in cancer-induced bone disease. 
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Figure captions 

Fig. 1 Mechanisms of action of Sost/sclerostin in bone. Upon binding to LRP4, 5 and 6, sclerostin inhibits 

Wnt/βcatenin signaling in mesenchymal stem cells and mature osteoblasts to decrease their proliferation and 

differentiation and bone forming activity, respectively. Recent findings show that inhibition of Wnt signaling in pre-

adipocytes by sclerostin induces adipogenesis and increases bone marrow adipose tissue formation. Further, 

inhibition of Wnt/βcatenin signaling in osteoblastic cells increases the Rankl/Opg ratio to favor osteoclast 

differentiation and bone resorption. Thus, neutralization of sclerostin has the potential to stimulate osteoblast 

differentiation and bone formation, reduce bone resorption, and decrease adipogenesis. 

Fig. 2 Actions of Sost/sclerostin in multiple myeloma-induced bone disease. Sclerostin expression is elevated in 

bone colonized by cancer cells. Based primarily on research done in myeloma, the increase in sclerostin expression 

favors bone loss and osteolysis by reducing osteoblast numbers and their bone-forming activity and increasing 

osteoclast differentiation and bone resorption. In addition, it is possible that sclerostin also stimulates the 

differentiation of mesenchymal precursors towards the adipogenic lineage. Pharmacologic inhibition of sclerostin 

stimulates new bone formation and modestly reduces bone resorption, thus preventing the bone loss and restoring 

bone strength. The effects of anti-sclerostin in bone marrow adiposity in bones bearing cancer cells require further 

investigation. 

 

 

 

 

 

 

 

 

 

 

 

 



16 
 

References 

•of importance 

••of high importance 

 1.  Townson JL, Chambers AF. Dormancy of solitary metastatic cells. Cell Cycle 2006; 5:1744-1750. 

 2.  Coleman RE. Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin.Cancer Res. 
2006; 12:6243s-6249s. 

 3.  Croucher PI, McDonald MM, Martin TJ. Bone metastasis: the importance of the neighbourhood. 
Nat.Rev.Cancer 2016; 16:373-386.  

 4.  Lawson MA, McDonald MM, Kovacic N, Hua KW, Terry RL, Down J, Kaplan W, Paton-Hough J, 
Fellows C, Pettitt JA, Neil DT, Van VE, Baldock PA, Rogers MJ, Eaton CL, Vanderkerken K, Pettit AR, 
Quinn JM, Zannettino AC, Phan TG, Croucher PI. Osteoclasts control reactivation of dormant myeloma 
cells by remodelling the endosteal niche. Nat.Commun. 2015; 6:8983. 

 5.  Wang N, Docherty F, Brown HK, Reeves K, Fowles A, Lawson M, Ottewell PD, Holen I, Croucher PI, 
Eaton CL. Mitotic quiescence, but not unique "stemness," marks the phenotype of bone metastasis-
initiating cells in prostate cancer. FASEB J. 2015; 29:3141-3150. 

 6.  Wang N, Reeves KJ, Brown HK, Fowles AC, Docherty FE, Ottewell PD, Croucher PI, Holen I, Eaton CL. 
The frequency of osteolytic bone metastasis is determined by conditions of the soil, not the number of 
seeds; evidence from in vivo models of breast and prostate cancer. J.Exp.Clin.Cancer Res. 2015; 34:124. 

 7.  Aggarwal R, Ghobrial IM, Roodman GD. Chemokines in multiple myeloma. Exp.Hematol. 2006; 34:1289-
1295. 

 8.  Roodman GD. Role of the bone marrow microenvironment in multiple myeloma. J Bone Miner.Res. 2002; 
17:1921-1925. 

 9.  Guise TA, Kozlow WM, Heras-Herzig A, Padalecki SS, Yin JJ, Chirgwin JM. Molecular mechanisms of 
breast cancer metastases to bone. Clin.Breast Cancer 2005; 5 Suppl:S46-S53. 

 10.  Giuliani N, Rizzoli V, Roodman GD. Multiple myeloma bone disease: Pathophysiology of osteoblast 
inhibition. Blood 2006; 108:3992-3996. 

 11.  Fairfield H, Falank C, Avery L, Reagan MR. Multiple myeloma in the marrow: pathogenesis and 
treatments. Ann.N.Y.Acad.Sci. 2016; 1364:32-51. 

 12.  Roodman GD. Pathogenesis of myeloma bone disease. Leukemia 2009; 23:435-441. 

 13.  Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat.Med. 2013; 
19:1423-1437. 

 14.  Sterling JA, Edwards JR, Martin TJ, Mundy GR. Advances in the biology of bone metastasis: how the 
skeleton affects tumor behavior. Bone 2011; 48:6-15. 

 15.  Olechnowicz SW, Edwards CM. Contributions of the host microenvironment to cancer-induced bone 
disease. Cancer Res. 2014; 74:1625-1631. 

 16.  McDonald MM, Fairfield H, Falank C, Reagan MR. Adipose, Bone, and Myeloma: Contributions from the 
Microenvironment. Calcif.Tissue Int. 2017; 100:433-448. 



17 
 

 17.  Delgado-Calle J, Bellido T. Osteocytes and Skeletal Pathophysiology. Curr.Mol.Biol.Rep. 2015; 1:157-
167. 

 18.  Bellido T. Osteocyte-Driven Bone Remodeling. Calcif.Tissue Int. 2013; 94:25-34. 

 19.  Delgado-Calle J, Bellido T, Roodman GD. Role of osteocytes in multiple myeloma bone disease. 
Curr.Opin.Support.Palliat.Care 2014; 8:407-413. 

 20.  Sottnik JL, Dai J, Zhang H, Campbell B, Keller ET. Tumor-induced pressure in the bone microenvironment 
causes osteocytes to promote the growth of prostate cancer bone metastases. Cancer Res. 2015; 75:2151-
2158. 

 21.  Kim W, Chung Y, Kim SH, Park S, Bae JH, Kim G, Lee SJ, Kim JE, Park BW, Lim SK, Rhee Y. Increased 
sclerostin levels after further ablation of remnant estrogen by aromatase inhibitors. Endocrinol.Metab 
(Seoul.) 2015; 30:58-64. 

 22.  Kyvernitakis I, Rachner TD, Urbschat A, Hars O, Hofbauer LC, Hadji P. Effect of aromatase inhibition on 
serum levels of sclerostin and dickkopf-1, bone turnover markers and bone mineral density in women with 
breast cancer. J.Cancer Res.Clin.Oncol. 2014; 140:1671-1680. 

 23.  Garcia-Fontana B, Morales-Santana S, Varsavsky M, Garcia-Martin A, Garcia-Salcedo JA, Reyes-Garcia 
R, Munoz-Torres M. Sclerostin serum levels in prostate cancer patients and their relationship with sex 
steroids. Osteoporos.Int. 2014; 25:645-651. 

 24.  Yavropoulou MP, van Lierop AH, Hamdy NA, Rizzoli R, Papapoulos SE. Serum sclerostin levels in 
Paget's disease and prostate cancer with bone metastases with a wide range of bone turnover. Bone 2012; 
51:153-157. 

 25.  Terpos E, Christoulas D, Katodritou E, Bratengeier C, Gkotzamanidou M, Michalis E, Delimpasi S, Pouli 
A, Meletis J, Kastritis E, Zervas K, Dimopoulos MA. Elevated circulating sclerostin correlates with 
advanced disease features and abnormal bone remodeling in symptomatic myeloma: reduction post-
bortezomib monotherapy. Int.J.Cancer 2012; 131:1466-1471.  

 26.  •Eda H, Santo L, Wein MN, Hu DZ, Cirstea DD, Nemani N, Tai YT, Raines SE, Kuhstoss SA, Munshi 
NC, Kronenberg HM, Raje NS. Regulation of Sclerostin Expression in Multiple Myeloma by Dkk-1; A 
Potential Therapeutic Strategy for Myeloma Bone Disease. J.Bone Miner.Res. 2016; 31:1225-1234. This 
paper presents data on the effects of anti-scleorstin therapy in combination with carfilzomib in an animal 
model of early myeloma. 

 27.  Balemans W, Ebeling M, Patel N, Van Hul E, Olson P, Dioszegi M, Lacza C, Wuyts W, Van Den Ende J, 
Willems P, Paes-Alves AF, Hill S, Bueno M, Ramos FJ, Tacconi P, Dikkers FG, Stratakis C, Lindpaintner 
K, Vickery B, Foernzler D, Van Hul W. Increased bone density in sclerosteosis is due to the deficiency of a 
novel secreted protein (SOST). Hum.Mol.Genet. 2001; 10:537-543. 

 28.  Balemans W, Van Den Ende J, Freire Paes-Alves A, Dikkers FG, Willems PJ, Vanhoenacker F, de 
Almeida-Melo N, Alves CF, Stratakis CA, Hill SC, Van Hul W. Localization of the gene for sclerosteosis 
to the van Buchem disease-gene region on chromosome 17q12-q21. Am.J.Hum.Genet. 1999; 64:1661-
1669. 

 29.  Baron R, Kneissel M. WNT signaling in bone homeostasis and disease: from human mutations to 
treatments. Nat.Med. 2013; 19:179-192. 

 30.  Niziolek PJ, MacDonald BT, Kedlaya R, Zhang M, Bellido T, He X, Warman ML, Robling AG. High 
Bone Mass-Causing Mutant LRP5 Receptors Are Resistant to Endogenous Inhibitors In Vivo. J.Bone 
Miner.Res. 2015; 30:1822-1830. 



18 
 

 31.  Delgado-Calle J, Sato AY, Bellido T. Role and mechanism of action of sclerostin in bone. Bone 2017; 
96:29-37.  

 32.  Li X, Ominsky MS, Niu QT, Sun N, Daugherty B, D'Agostin D, Kurahara C, Gao Y, Cao J, Gong J, 
Asuncion F, Barrero M, Warmington K, Dwyer D, Stolina M, Morony S, Sarosi I, Kostenuik PJ, Lacey 
DL, Simonet WS, Ke HZ, Paszty C. Targeted deletion of the sclerostin gene in mice results in increased 
bone formation and bone strength. J.Bone Miner.Res. 2008; 23:860-869. 

 33.  Winkler DG, Sutherland MK, Geoghegan JC, Yu C, Hayes T, Skonier JE, Shpektor D, Jonas M, 
Kovacevich BR, Staehling-Hampton K, Appleby M, Brunkow ME, Latham JA. Osteocyte control of bone 
formation via sclerostin, a novel BMP antagonist. EMBO J. 2003; 22:6267-6276. 

 34.  Loots GG, Kneissel M, Keller H, Baptist M, Chang J, Collette NM, Ovcharenko D, Plajzer-Frick I, Rubin 
EM. Genomic deletion of a long-range bone enhancer misregulates sclerostin in Van Buchem disease. 
Genome Res. 2005; 15:928-935. 

 35.  Rhee Y, Allen MR, Condon K, Lezcano V, Ronda AC, Galli C, Olivos N, Passeri G, O'Brien CA, Bivi N, 
Plotkin LI, Bellido T. PTH receptor signaling in osteocytes governs periosteal bone formation and intra-
cortical remodeling. J.Bone Miner.Res. 2011; 26:1035-1046. 

 36.  Li X, Zhang Y, Kang H, Liu W, Liu P, Zhang J, Harris SE, Wu D. Sclerostin binds to LRP5/6 and 
antagonizes canonical Wnt signaling. J.Biol.Chem. 2005; 280:19883-19887. 

 37.  Leupin O, Piters E, Halleux C, Hu S, Kramer I, Morvan F, Bouwmeester T, Schirle M, Bueno-Lozano M, 
Fuentes FJ, Itin PH, Boudin E, de FF, Jennes K, Brannetti B, Charara N, Ebersbach H, Geisse S, Lu CX, 
Bauer A, Van HW, Kneissel M. Bone overgrowth-associated mutations in the LRP4 gene impair sclerostin 
facilitator function. J.Biol.Chem. 2011; 286:19489-19500. 

 38.  Stolina M, Dwyer D, Niu QT, Villasenor KS, Kurimoto P, Grisanti M, Han CY, Liu M, Li X, Ominsky 
MS, Ke HZ, Kostenuik PJ. Temporal changes in systemic and local expression of bone turnover markers 
during six months of sclerostin antibody administration to ovariectomized rats. Bone 2014; 67:305-313. 

 39.  Glass DA, Bialek P, Ahn JD, Starbuck M, Patel MS, Clevers H, Taketo MM, Long F, McMahon AP, Lang 
RA, Karsenty G. Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. 
Dev.Cell 2005; 8:751-764. 

 40.  Holmen SL, Zylstra CR, Mukherjee A, Sigler RE, Faugere MC, Bouxsein ML, Deng L, Clemens TL, 
Williams BO. Essential role of beta-catenin in postnatal bone acquisition. J.Biol.Chem. 2005; 280:21162-
21168. 

 41.  Kramer I, Halleux C, Keller H, Pegurri M, Gooi JH, Weber PB, Feng JQ, Bonewald LF, Kneissel M. 
Osteocyte Wnt/beta-catenin signaling is required for normal bone homeostasis. Mol.Cell Biol. 2010; 
30:3071-3085. 

 42.  Tu X, Delgado-Calle J, Condon KW, Maycas M, Zhang H, Carlesso N, Taketo MM, Burr DB, Plotkin LI, 
Bellido T. Osteocytes mediate the anabolic actions of canonical Wnt/β-catenin signaling in bone. 
Proc.Natl.Acad.Sci U.S.A. 2015; 112:E478-E486. 

 43.  Wijenayaka AR, Kogawa M, Lim HP, Bonewald LF, Findlay DM, Atkins GJ. Sclerostin stimulates 
osteocyte support of osteoclast activity by a RANKL-dependent pathway. PLoS.ONE. 2011; 6:e25900. 

 44.  Amrein K, Amrein S, Drexler C, Dimai HP, Dobnig H, Pfeifer K, Tomaschitz A, Pieber TR, Fahrleitner-
Pammer A. Sclerostin and its association with physical activity, age, gender, body composition, and bone 
mineral content in healthy adults. J.Clin.Endocrinol.Metab 2012; 97:148-154. 



19 
 

 45.  Urano T, Shiraki M, Ouchi Y, Inoue S. Association of circulating sclerostin levels with fat mass and 
metabolic disease--related markers in Japanese postmenopausal women. J.Clin.Endocrinol.Metab 2012; 
97:E1473-E1477. 

 46.  Klangjareonchai T, Nimitphong H, Saetung S, Bhirommuang N, Samittarucksa R, Chanprasertyothin S, 
Sudatip R, Ongphiphadhanakul B. Circulating sclerostin and irisin are related and interact with gender to 
influence adiposity in adults with prediabetes. Int.J.Endocrinol. 2014; 2014:261545. 

 47.  Ukita M, Yamaguchi T, Ohata N, Tamura M. Sclerostin Enhances Adipocyte Differentiation in 3T3-L1 
Cells. J.Cell Biochem. 2016; 117:1419-1428. 

 48.  Fairfield H, Falank C, Harris E, DeMambro V, McDonald M, Pettit JA, Mohanty ST, Croucher P, Kramer 
I, Kneissel M, Rosen CJ, Reagan MR. The Skeletal Cell-Derived Molecule Sclerostin Drives Bone Marrow 
Adipogenesis. J.Cell Physiol 2017; doi: 10.1002/jcp.25976. 

 49.  Fulzele K, Lai F, Dedic C, Saini V, Uda Y, Shi C, Tuck P, Aronson JL, Liu X, Spatz JM, Wein M, Pajevic 
PD. Osteocyte-Secreted Wnt Signaling Inhibitor Sclerostin Contributes to Beige Adipogenesis in 
Peripheral Fat Depots. J.Bone Miner.Res. 2017; 32:373-384. 

 50.  Kim SW, Lu Y, Williams EA, Lai F, Lee JY, Enishi T, Balani DH, Ominsky MS, Ke HZ, Kronenberg HM, 
Wein MN. Sclerostin Antibody Administration Converts Bone Lining Cells into Active Osteoblasts. J.Bone 
Miner.Res. 2016; 32:892-901. 

 51.  Poole KE, Van Bezooijen RL, Loveridge N, Hamersma H, Papapoulos SE, Lowik CW, Reeve J. Sclerostin 
is a delayed secreted product of osteocytes that inhibits bone formation. FASEB J. 2005; 19:1842-1844. 

 52.  Xiong J, Piemontese M, Onal M, Campbell J, Goellner JJ, Dusevich V, Bonewald L, Manolagas SC, 
O'Brien CA. Osteocytes, not Osteoblasts or Lining Cells, are the Main Source of the RANKL Required for 
Osteoclast Formation in Remodeling Bone. PLoS.ONE. 2015; 10:e0138189. 

 53.  Pederson L, Ruan M, Westendorf JJ, Khosla S, Oursler MJ. Regulation of bone formation by osteoclasts 
involves Wnt/BMP signaling and the chemokine sphingosine-1-phosphate. Proc.Natl.Acad.Sci.U.S.A 2008; 
105:20764-20769. 

 54.  Ota K, Quint P, Ruan M, Pederson L, Westendorf JJ, Khosla S, Oursler MJ. Sclerostin is expressed in 
osteoclasts from aged mice and reduces osteoclast-mediated stimulation of mineralization. J.Cell Biochem. 
2013; 114:1901-1907. 

 55.  Jager A, Gotz W, Lossdorfer S, Rath-Deschner B. Localization of SOST/sclerostin in cementocytes in vivo 
and in mineralizing periodontal ligament cells in vitro. J.Periodontal Res. 2010; 45:246-254. 

 56.  Van Bezooijen RL, Bronckers AL, Gortzak RA, Hogendoorn PC, Van der Wee-Pals L, Balemans W, 
Oostenbroek HJ, Van Hul W, Hamersma H, Dikkers FG, Hamdy NA, Papapoulos SE, Lowik CW. 
Sclerostin in mineralized matrices and van Buchem disease. J.Dent.Res. 2009; 88:569-574. 

 57.  Roudier M, Li X, Niu QT, Pacheco E, Pretorius JK, Graham K, Yoon BR, Gong J, Warmington K, Ke HZ, 
Black RA, Hulme J, Babij P. Sclerostin is expressed in articular cartilage but loss or inhibition does not 
affect cartilage remodeling during aging or following mechanical injury. Arthritis Rheum. 2013; 65:721-
731. 

 58.  Brandenburg VM, Kramann R, Koos R, Kruger T, Schurgers L, Muhlenbruch G, Hubner S, Gladziwa U, 
Drechsler C, Ketteler M. Relationship between sclerostin and cardiovascular calcification in hemodialysis 
patients: a cross-sectional study. BMC.Nephrol. 2013; 14:219. 



20 
 

 59.  Shao JS, Cheng SL, Pingsterhaus JM, Charlton-Kachigian N, Loewy AP, Towler DA. Msx2 promotes 
cardiovascular calcification by activating paracrine Wnt signals. J.Clin.Invest 2005; 115:1210-1220. 

 60.  Zhu D, Mackenzie NC, Millan JL, Farquharson C, MacRae VE. The appearance and modulation of 
osteocyte marker expression during calcification of vascular smooth muscle cells. PLoS.ONE. 2011; 
6:e19595. 

 61.  Wehmeyer C, Frank S, Beckmann D, Bottcher M, Cromme C, Konig U, Fennen M, Held A, Paruzel P, 
Hartmann C, Stratis A, Korb-Pap A, Kamradt T, Kramer I, van den Berg W, Kneissel M, Pap T, Dankbar 
B. Sclerostin inhibition promotes TNF-dependent inflammatory joint destruction. Sci.Transl.Med. 2016; 
8:330ra35. 

 62.  Colucci S, Brunetti G, Oranger A, Mori G, Sardone F, Specchia G, Rinaldi E, Curci P, Liso V, Passeri G, 
Zallone A, Rizzi R, Grano M. Myeloma cells suppress osteoblasts through sclerostin secretion. Blood 
Cancer J. 2011; 1:e27. 

 63.  Brunetti G, Oranger A, Mori G, Specchia G, Rinaldi E, Curci P, Zallone A, Rizzi R, Grano M, Colucci S. 
Sclerostin is overexpressed by plasma cells from multiple myeloma patients. Ann.N.Y.Acad.Sci. 2011; 
1237:19-23. 

 64.  Staehling-Hampton K, Proll S, Paeper BW, Zhao L, Charmley P, Brown A, Gardner JC, Galas D, 
Schatzman RC, Beighton P, Papapoulos S, Hamersma H, Brunkow ME. A 52-kb deletion in the SOST-
MEOX1 intergenic region on 17q12-q21 is associated with van Buchem disease in the Dutch population. 
Am.J.Med.Genet. 2002; 110:144-152. 

 65.  Leupin O, Kramer I, Collette NM, Loots GG, Natt F, Kneissel M, Keller H. Control of the SOST bone 
enhancer by PTH using MEF2 transcription factors. J.Bone Miner.Res. 2007; 22:1957-1967. 

 66.  Collette NM, Genetos DC, Economides AN, Xie L, Shahnazari M, Yao W, Lane NE, Harland RM, Loots 
GG. Targeted deletion of Sost distal enhancer increases bone formation and bone mass. 
Proc.Natl.Acad.Sci.U.S.A 2012; 109:14092-14097. 

 67.  del Real A, Riancho JA, Delgado-Calle J. Epigenetic regulation of Sost/sclerostin expression. Current 
Molecular Biology Reports 2017; 3:85. 

 
 68.  Delgado-Calle J, Sanudo C, Bolado A, Fernandez AF, Arozamena J, Pascual-Carra MA, Rodriguez-Rey 

JC, Fraga MF, Bonewald L, Riancho JA. DNA methylation contributes to the regulation of sclerostin 
expression in human osteocytes. J.Bone Miner.Res. 2012; 27:926-937. 

 69.  Bellido T, Ali AA, Gubrij I, Plotkin LI, Fu Q, O'Brien CA, Manolagas SC, Jilka RL. Chronic elevation of 
PTH in mice reduces expression of sclerostin by osteocytes: a novel mechanism for hormonal control of 
osteoblastogenesis. Endocrinology 2005; 146:4577-4583. 

 70.  Bellido T, Saini.V, Divieti Pajevic P. Effects of PTH on osteocyte function. Bone 2013; 54:250-257. 

 71.  Keller H, Kneissel M. SOST is a target gene for PTH in bone. Bone 2005; 37:148-158. 

 72.  Loots GG, Keller H, Leupin O, Murugesh D, Collette NM, Genetos DC. TGF-beta regulates sclerostin 
expression via the ECR5 enhancer. Bone 2012; 50:663-669. 

 73.  Kamiya N, Ye L, Kobayashi T, Mochida Y, Yamauchi M, Kronenberg HM, Feng JQ, Mishina Y. BMP 
signaling negatively regulates bone mass through sclerostin by inhibiting the canonical Wnt pathway. 
Development 2008; 135:3801-3811. 



21 
 

 74.  Delgado-Calle J, Arozamena J, Perez-Lopez J, Bolado-Carrancio A, Sanudo C, Agudo G, de l, V, Alonso 
MA, Rodriguez-Rey JC, Riancho JA. Role of BMPs in the regulation of sclerostin as revealed by an 
epigenetic modifier of human bone cells. Mol.Cell Endocrinol. 2013; 369:27-34. 

 75.  Vincent C, Findlay DM, Welldon KJ, Wijenayaka AR, Zheng TS, Haynes DR, Fazzalari NL, Evdokiou A, 
Atkins GJ. Pro-inflammatory cytokines TNF-related weak inducer of apoptosis (TWEAK) and TNFalpha 
induce the mitogen-activated protein kinase (MAPK)-dependent expression of sclerostin in human 
osteoblasts. J Bone Miner Res 2009; 24:1434-1449. 

 76.  Koide M, Kobayashi Y, Yamashita T, Uehara S, Nakamura M, Hiraoka BY, Ozaki Y, Iimura T, Yasuda H, 
Takahashi N, Udagawa N. Bone formation is coupled to resorption via suppression of sclerostin expression 
by osteoclasts. J.Bone Miner.Res. 2017; doi: 10.1002/jbmr.3175. 

 77.  Delgado-Calle J. Osteocytes and their messengers as targets for the treament of multiple myeloma. Clinical 
Reviews in Bone and Mineral Metabolism 2017; 15:49-56. 

 78.  Giuliani N, Ferretti M, Bolzoni M, Storti P, Lazzaretti M, Dalla PB, Bonomini S, Martella E, Agnelli L, 
Neri A, Ceccarelli F, Palumbo C. Increased osteocyte death in multiple myeloma patients: role in 
myeloma-induced osteoclast formation. Leukemia 2012; 26:1391-1401. 

 79.  •Delgado-Calle J, Anderson J, Cregor MD, Hiasa M, Chirgwin JM, Carlesso N, Yoneda T, Mohammad 
KS, Plotkin LI, Roodman GD, Bellido T. Bidirectional Notch signaling and osteocyte-derived factors in the 
bone marrow microenvironment promote tumor cell proliferation and bone destruction in multiple 
myeloma. Cancer Res. 2016; 76:1089-1100. This paper desribes for the first time overproduciton of 
sclerostin by osteocytes in bones colonized by myeloma cells. 

 80.  Toscani D, Palumbo C, Dalla PB, Ferretti M, Bolzoni M, Marchica V, Sena P, Martella E, Mancini C, Ferri 
V, Costa F, Accardi F, Craviotto L, Aversa F, Giuliani N. The Proteasome Inhibitor Bortezomib Maintains 
Osteocyte Viability in Multiple Myeloma Patients by Reducing Both Apoptosis and Autophagy: A New 
Function for Proteasome Inhibitors. J.Bone Miner.Res. 2016; 31:815-827. 

 81.  Hiasa M, Okui T, Allette YM, Ripsch MS, Sun-Wada GH, Wakabayashi H, Roodman GD, White FA, 
Yoneda T. Bone Pain Induced by Multiple Myeloma Is Reduced by Targeting V-ATPase and ASIC3. 
Cancer Res. 2017; 77:1283-1295. 

 82.  Sottnik JL, Campbell B, Mehra R, Behbahani-Nejad O, Hall CL, Keller ET. Osteocytes serve as a 
progenitor cell of osteosarcoma. J.Cell Biochem. 2014; 115:1420-1429. 

 83.  Inagaki Y, Hookway ES, Kashima TG, Munemoto M, Tanaka Y, Hassan AB, Oppermann U, Athanasou 
NA. Sclerostin expression in bone tumours and tumour-like lesions. Histopathology 2016; 69:470-478. 

 84.  Mendoza-Villanueva D, Zeef L, Shore P. Metastatic breast cancer cells inhibit osteoblast differentiation 
through the Runx2/CBFbeta-dependent expression of the Wnt antagonist, sclerostin. Breast Cancer Res. 
2011; 13:R106. 

 85.  Wibmer C, Amrein K, Fahrleitner-Pammer A, Gilg MM, Berghold A, Hutterer GC, Maurer-Ertl W, Gerger 
A, Leithner A, Pichler M, Szkandera J. Serum sclerostin levels in renal cell carcinoma patients with bone 
metastases. Sci.Rep. 2016; 6:33551. 

 86.  Rossini M, Viapiana O, Zanotti R, Tripi G, Perbellini O, Idolazzi L, Bonifacio M, Adami S, Gatti D. 
Dickkopf-1 and sclerostin serum levels in patients with systemic mastocytosis. Calcif.Tissue Int. 2015; 
96:410-416. 



22 
 

 87.  Roforth MM, Fujita K, McGregor UI, Kirmani S, McCready LK, Peterson JM, Drake MT, Monroe DG, 
Khosla S. Effects of age on bone mRNA levels of sclerostin and other genes relevant to bone metabolism in 
humans. Bone 2014; 59:1-6. 

 88.  Modder UI, Hoey KA, Amin S, McCready LK, Achenbach SJ, Riggs BL, Melton LJ, III, Khosla S. 
Relation of age, gender, and bone mass to circulating sclerostin levels in women and men. J.Bone 
Miner.Res. 2010; 26:373-379. 

 89.  Hudson BD, Hum NR, Thomas CB, Kohlgruber A, Sebastian A, Collette NM, Coleman MA, Christiansen 
BA, Loots GG. SOST Inhibits Prostate Cancer Invasion. PLoS.One. 2015; 10:e0142058. 

 90.  Sebastian A, Hum NR, Hudson BD, Loots GG. Cancer-Osteoblast Interaction Reduces Sost Expression in 
Osteoblasts and Up-Regulates lncRNA MALAT1 in Prostate Cancer. Microarrays.(Basel) 2015; 4:503-519. 

 91.  Wang XT, He YC, Zhou SY, Jiang JZ, Huang YM, Liang YZ, Lai YR. Bone marrow plasma macrophage 
inflammatory protein protein-1 alpha(MIP-1 alpha) and sclerostin in multiple myeloma: relationship with 
bone disease and clinical characteristics. Leuk.Res. 2014; 38:525-531. 

 92.  ••McDonald MM, Reagan MR, Youlten SE, Mohanty ST, Seckinger A, Terry RL, Pettitt JA, Simic MK, 
Cheng TL, Morse A, Le LMT, Abi-Hanna D, Kramer I, Falank C, Fairfield H, Ghobrial IM, Baldock PA, 
Little DG, Kneissel M, Vanderkerken K, Bassett JHD, Williams GR, Oyajobi BO, Hose D, Phan TG, 
Croucher PI. Inhibiting the osteocyte specific protein sclerostin increases bone mass and fracture resistance 
in multiple myeloma. Blood 2017; doi: 10.1182/blood-2017-03-773341. This study demonstrates the 
efficay of anti-sclerostin therapy, alone and in combinaiton with a bisphosphonate, to prevent bone loss and 
improve bone mechanical properties in  mouse and human xenograft models of myeloma. 

 93.  ••Delgado-Calle J, Anderson J, Cregor MD, Condon KW, Kuhstoss SA, Plotkin LI, Bellido T, Roodman 
GD. Genetic deletion of sost or pharmacological inhibition of sclerostin prevent multiple myeloma-induced 
bone disease without affecting tumor growth. Leukemia 2017; doi: 10.1038/leu.2017.152. This study shows 
that genetic and pharmacologic inhibition of Sost/sclerostin prevents bone loss and stimulates bone 
formation in  a mouse model of established myeloma. 

 94.  Coleman R, Gnant M, Morgan G, Clezardin P. Effects of bone-targeted agents on cancer progression and 
mortality. J.Natl.Cancer Inst. 2012; 104:1059-1067. 

 95.  Ominsky MS, Boyce RW, Li X, Ke HZ. Effects of sclerostin antibodies in animal models of osteoporosis. 
Bone 2017; 96:63-75. 

 96.  McClung MR. Clinical utility of anti-sclerostin antibodies. Bone 2017; 96:3-7. 

 97.  McClung MR, Grauer A, Boonen S, Bolognese MA, Brown JP, ez-Perez A, Langdahl BL, Reginster JY, 
Zanchetta JR, Wasserman SM, Katz L, Maddox J, Yang YC, Libanati C, Bone HG. Romosozumab in 
Postmenopausal Women with Low Bone Mineral Density. N.Engl.J.Med. 2014; 370:412-420. 

 98.  Keaveny TM, Crittenden DB, Bolognese MA, Genant HK, Engelke K, Oliveri B, Brown JP, Langdahl BL, 
Yan C, Grauer A, Libanati C. Greater Gains in Spine and Hip Strength for Romosozumab Compared to 
Teriparatide in Postmenopausal Women With Low Bone Mass. J.Bone Miner.Res. 2017; doi: 
10.1002/jbmr.3176. 

 99.  Zhan T, Rindtorff N, Boutros M. Wnt signaling in cancer. Oncogene 2017; 36:1461-1473. 

 100.  Derksen PW, Tjin E, Meijer HP, Klok MD, MacGillavry HD, van Oers MH, Lokhorst HM, Bloem AC, 
Clevers H, Nusse R, van der Neut R, Spaargaren M, Pals ST. Illegitimate WNT signaling promotes 
proliferation of multiple myeloma cells. Proc.Natl.Acad.Sci.U.S.A 2004; 101:6122-6127. 



23 
 

 101.  Gregory LS, Choi W, Burke L, Clements JA. Breast cancer cells induce osteolytic bone lesions in vivo 
through a reduction in osteoblast activity in mice. PLoS.ONE. 2013; 8:e68103. 

 102.  Bu G, Lu W, Liu CC, Selander K, Yoneda T, Hall C, Keller ET, Li Y. Breast cancer-derived Dickkopf1 
inhibits osteoblast differentiation and osteoprotegerin expression: implication for breast cancer osteolytic 
bone metastases. Int.J.Cancer 2008; 123:1034-1042. 

 103.  Voorzanger-Rousselot N, Goehrig D, Journe F, Doriath V, Body JJ, Clezardin P, Garnero P. Increased 
Dickkopf-1 expression in breast cancer bone metastases. Br.J.Cancer 2007; 97:964-970. 

 104.  Kristensen IB, Christensen JH, Lyng MB, Moller MB, Pedersen L, Rasmussen LM, Ditzel HJ, Abildgaard 
N. Expression of osteoblast and osteoclast regulatory genes in the bone marrow microenvironment in 
multiple myeloma: only up-regulation of Wnt inhibitors SFRP3 and DKK1 is associated with lytic bone 
disease. Leuk.Lymphoma 2013; 55:911-919. 

 105.  Heath DJ, Chantry AD, Buckle CH, Coulton L, Shaughnessy JD, Jr., Evans HR, Snowden JA, Stover DR, 
Vanderkerken K, Croucher PI. Inhibiting Dickkopf-1 (Dkk1) removes suppression of bone formation and 
prevents the development of osteolytic bone disease in multiple myeloma. J.Bone Miner.Res. 2009; 
24:425-436. 

 106.  Yaccoby S, Ling W, Zhan F, Walker R, Barlogie B, Shaughnessy JD, Jr. Antibody-based inhibition of 
DKK1 suppresses tumor-induced bone resorption and multiple myeloma growth in vivo. Blood 2007; 
109:2106-2111. 

 107.  Fulciniti M, Tassone P, Hideshima T, Vallet S, Nanjappa P, Ettenberg SA, Shen Z, Patel N, Tai YT, 
Chauhan D, Mitsiades C, Prabhala R, Raje N, Anderson KC, Stover DR, Munshi NC. Anti-DKK1 mAb 
(BHQ880) as a potential therapeutic agent for multiple myeloma. Blood 2009; 114:371-379. 

 108.  Florio M, Gunasekaran K, Stolina M, Li X, Liu L, Tipton B, Salimi-Moosavi H, Asuncion FJ, Li C, Sun B, 
Tan HL, Zhang L, Han CY, Case R, Duguay AN, Grisanti M, Stevens J, Pretorius JK, Pacheco E, Jones H, 
Chen Q, Soriano BD, Wen J, Heron B, Jacobsen FW, Brisan E, Richards WG, Ke HZ, Ominsky MS. A 
bispecific antibody targeting sclerostin and DKK-1 promotes bone mass accrual and fracture repair. 
Nat.Commun. 2016; 7:11505. 

 109.  McDonald MM, Morse A, Mikulec K, Peacock L, Yu N, Baldock PA, Birke O, Liu M, Ke HZ, Little DG. 
Inhibition of sclerostin by systemic treatment with sclerostin antibody enhances healing of proximal tibial 
defects in ovariectomized rats. J.Orthop.Res. 2012; 30:1541-1548. 

 110.  Suen PK, He YX, Chow DH, Huang L, Li C, Ke HZ, Ominsky MS, Qin L. Sclerostin monoclonal antibody 
enhanced bone fracture healing in an open osteotomy model in rats. J.Orthop.Res. 2014; 32:997-1005. 

 111.  Liu Y, Rui Y, Cheng TY, Huang S, Xu L, Meng F, Lee WY, Zhang T, Li N, Li C, Ke H, Li G. Effects of 
Sclerostin Antibody on the Healing of Femoral Fractures in Ovariectomised Rats. Calcif.Tissue Int. 2016; 
98:263-274. 

 112.  Feng G, Chang-Qing Z, Yi-Min C, Xiao-Lin L. Systemic administration of sclerostin monoclonal antibody 
accelerates fracture healing in the femoral osteotomy model of young rats. Int.Immunopharmacol. 2015; 
24:7-13. 

 113.  Morse A, McDonald MM, Schindeler A, Peacock L, Mikulec K, Cheng TL, Liu M, Ke HZ, Little DG. 
Sclerostin Antibody Increases Callus Size and Strength but does not Improve Fracture Union in a 
Challenged Open Rat Fracture Model. Calcif.Tissue Int. 2017; doi: 10.1007/s00223-017-0275-2. 



24 
 

 114.  Tinsley BA, Dukas A, Pensak MJ, Adams DJ, Tang AH, Ominsky MS, Ke HZ, Lieberman JR. Systemic 
Administration of Sclerostin Antibody Enhances Bone Morphogenetic Protein-Induced Femoral Defect 
Repair in a Rat Model. J.Bone Joint Surg.Am. 2015; 97:1852-1859. 

 115.  Trotter TN, Gibson JT, Sherpa TL, Gowda PS, Peker D, Yang Y. Adipocyte-Lineage Cells Support Growth 
and Dissemination of Multiple Myeloma in Bone. Am.J.Pathol. 2016; 186:3054-3063. 

 116.  Yu W, Cao DD, Li QB, Mei HL, Hu Y, Guo T. Adipocytes secreted leptin is a pro-tumor factor for 
survival of multiple myeloma under chemotherapy. Oncotarget. 2016; 7:86075-86086. 

 117.  Morris EV, Edwards CM. Bone Marrow Adipose Tissue: A New Player in Cancer Metastasis to Bone. 
Front Endocrinol.(Lausanne) 2016; 7:90. 

 118.  Fowler JA, Lwin ST, Drake MT, Edwards JR, Kyle RA, Mundy GR, Edwards CM. Host-derived 
adiponectin is tumor-suppressive and a novel therapeutic target for multiple myeloma and the associated 
bone disease. Blood 2011; 118:5872-5882. 

 
 
 
 
 


