6 research outputs found

    Medição do máximo desenvolvimento de chuveiros atmosféricos extensos usando telescópios de imagem atmosférica Cherenkov

    No full text
    Cosmic rays are at the foundation of astroparticle physics and the extensive air showers (EAS) is one indirect way to detect them. Air showers, however, have been used to infer information not just of cosmic rays particles, but also to localize gamma rays sources. The shower maximum of an EAS, defined as the position at the atmosphere where the maximum quantity of charged particles is reached, is an observable of air showers that can permit to infer the mass composition of cosmic rays. For this reason, it is important to propose methods to measure it. Several methods to determine the shower maximum have been implemented in the last decades with the development of different kinds of telescopes. This work discusses the possibility of determining the maximum of air showers using imaging atmospheric Cherenkov telescopes (IACT). The Cherenkov telescopes can detect the Cherenkov radiation produced by the interaction of charged particles with the atmosphere. Those Cherenkov photons are projected back into the plane containing the longitudinal development of the air shower. Each plane is saved as a 2D histogram with the longitudinal and lateral development in the vertical and horizontal axis, respectively. A detailed analysis of each 2D histogram is presented and used to obtain the depth of the maximum of the Cherenkov profile. The main effect seen is a decrease in the shower maximum of Cherenkov photons as a function of the telescope position from the shower axis to 150 m. After 150m from the shower axis, there is a constant behavior that is correlated to the real depth of the maximum of an EAS. Based on this constant behavior after 150 m, the shower maximum is reconstructed and it is shown the resolution of the method as a function of the energy, which is around 55 g/cm2 considering just one telescope, and 15 g/cm2 for the best case considering zenith angle of 20 degrees. Moreover, the method is tested with some simulations took from Very Energetic Radiation Imaging Telescope Array System (VERITAS) experiment to compare with the results of our simulations. The resolution of the reconstruction of the shower maximum for proton and iron showers was also done which ranges around 80 g/cm2 for proton and around 30 g/cm2 for iron in the case of 20° of zenith angle.Os raios cĂłsmicos estĂŁo na base da fĂ­sica das astropartĂ­culas e os chuveiros atmosfĂ©ricos extensos (EAS pela sigla em inglĂŞs) sĂŁo uma maneira indireta de detectá-los. Os chuveiros atmosfĂ©ricos, no entanto, tĂŞm sido usados para inferir informações nĂŁo apenas sobre partĂ­culas de raios cĂłsmicos, mas tambĂ©m para localizar fontes de raios gama. A profundidade de máximo num EAS, definido como a profundidade atmosfĂ©rica onde a quantidade máxima de partĂ­culas carregadas Ă© atingida, Ă© um observável de EAS que permite inferir a composição de massa dos raios cĂłsmicos. Por esse motivo, Ă© importante propor mĂ©todos para medĂ­-lo. Vários mĂ©todos para determinar a profundidade de máximo foram implementados nas Ăşltimas dĂ©cadas com o desenvolvimento de diferentes tipos de telescĂłpios. Este trabalho discute a possibilidade de determinar a profundidade de máximo de chuveiros atmosfĂ©ricos utilizando os telescĂłpios atmosfĂ©ricos Cherenkov (IACT). Os telescĂłpios Cherenkov podem detectar a radiação Cherenkov produzida pela interação de partĂ­culas carregadas com a atmosfera. Esses fĂłtons Cherenkov sĂŁo projetados de volta ao plano que contĂ©m o desenvolvimento longitudinal do chuveiro. Cada plano Ă© salvo num histograma 2D com o desenvolvimento longitudinal e lateral no eixo vertical e horizontal, respectivamente. Uma análise detalhada de cada histograma 2D Ă© apresentada e usada para obter a profundidade máxima do perfil de emissĂŁo de luz Cherenkov. O principal efeito visto Ă© uma diminuição na profundidade de máximo dos fĂłtons Cherenkov do chuveiro como função da posição do telescĂłpio a partir do eixo do chuveiro atĂ© 150 m. A partir de 150 m do eixo do chuveiro, há um comportamento constante que está correlacionado com a profundidade real de máximo do EAS. Com base nesse comportamento constante apĂłs 150 m, o máximo do chuveiro Ă© reconstruĂ­do e Ă© mostrada a resolução do mĂ©todo em função da energia, que Ă© cerca de 55 g/cm2 considerando apenas um telescĂłpio, e 15 g/cm2 para o melhor caso, considerando o ângulo zenital de 20 graus. AlĂ©m disso, o mĂ©todo Ă© testado com algumas simulações cedidas pelo experimento VERITAS (Very Energetic Radiation Imaging Telescope Array System, pela sigla em inglĂŞs) para comparar com os resultados de nossas simulações. TambĂ©m foi feita a resolução da reconstrução da profundidade de máximo para chuveiros atmosfĂ©ricos de prĂłtons e ferro, que varia em torno de 80 g/cm2 para prĂłtons e em torno de 30 g/cm2 para ferro no caso chuveiros inclinados a um ângulo de 20°

    Medição do máximo desenvolvimento de chuveiros atmosféricos extensos usando telescópios de imagem atmosférica Cherenkov

    No full text
    Cosmic rays are at the foundation of astroparticle physics and the extensive air showers (EAS) is one indirect way to detect them. Air showers, however, have been used to infer information not just of cosmic rays particles, but also to localize gamma rays sources. The shower maximum of an EAS, defined as the position at the atmosphere where the maximum quantity of charged particles is reached, is an observable of air showers that can permit to infer the mass composition of cosmic rays. For this reason, it is important to propose methods to measure it. Several methods to determine the shower maximum have been implemented in the last decades with the development of different kinds of telescopes. This work discusses the possibility of determining the maximum of air showers using imaging atmospheric Cherenkov telescopes (IACT). The Cherenkov telescopes can detect the Cherenkov radiation produced by the interaction of charged particles with the atmosphere. Those Cherenkov photons are projected back into the plane containing the longitudinal development of the air shower. Each plane is saved as a 2D histogram with the longitudinal and lateral development in the vertical and horizontal axis, respectively. A detailed analysis of each 2D histogram is presented and used to obtain the depth of the maximum of the Cherenkov profile. The main effect seen is a decrease in the shower maximum of Cherenkov photons as a function of the telescope position from the shower axis to 150 m. After 150m from the shower axis, there is a constant behavior that is correlated to the real depth of the maximum of an EAS. Based on this constant behavior after 150 m, the shower maximum is reconstructed and it is shown the resolution of the method as a function of the energy, which is around 55 g/cm2 considering just one telescope, and 15 g/cm2 for the best case considering zenith angle of 20 degrees. Moreover, the method is tested with some simulations took from Very Energetic Radiation Imaging Telescope Array System (VERITAS) experiment to compare with the results of our simulations. The resolution of the reconstruction of the shower maximum for proton and iron showers was also done which ranges around 80 g/cm2 for proton and around 30 g/cm2 for iron in the case of 20° of zenith angle.Os raios cĂłsmicos estĂŁo na base da fĂ­sica das astropartĂ­culas e os chuveiros atmosfĂ©ricos extensos (EAS pela sigla em inglĂŞs) sĂŁo uma maneira indireta de detectá-los. Os chuveiros atmosfĂ©ricos, no entanto, tĂŞm sido usados para inferir informações nĂŁo apenas sobre partĂ­culas de raios cĂłsmicos, mas tambĂ©m para localizar fontes de raios gama. A profundidade de máximo num EAS, definido como a profundidade atmosfĂ©rica onde a quantidade máxima de partĂ­culas carregadas Ă© atingida, Ă© um observável de EAS que permite inferir a composição de massa dos raios cĂłsmicos. Por esse motivo, Ă© importante propor mĂ©todos para medĂ­-lo. Vários mĂ©todos para determinar a profundidade de máximo foram implementados nas Ăşltimas dĂ©cadas com o desenvolvimento de diferentes tipos de telescĂłpios. Este trabalho discute a possibilidade de determinar a profundidade de máximo de chuveiros atmosfĂ©ricos utilizando os telescĂłpios atmosfĂ©ricos Cherenkov (IACT). Os telescĂłpios Cherenkov podem detectar a radiação Cherenkov produzida pela interação de partĂ­culas carregadas com a atmosfera. Esses fĂłtons Cherenkov sĂŁo projetados de volta ao plano que contĂ©m o desenvolvimento longitudinal do chuveiro. Cada plano Ă© salvo num histograma 2D com o desenvolvimento longitudinal e lateral no eixo vertical e horizontal, respectivamente. Uma análise detalhada de cada histograma 2D Ă© apresentada e usada para obter a profundidade máxima do perfil de emissĂŁo de luz Cherenkov. O principal efeito visto Ă© uma diminuição na profundidade de máximo dos fĂłtons Cherenkov do chuveiro como função da posição do telescĂłpio a partir do eixo do chuveiro atĂ© 150 m. A partir de 150 m do eixo do chuveiro, há um comportamento constante que está correlacionado com a profundidade real de máximo do EAS. Com base nesse comportamento constante apĂłs 150 m, o máximo do chuveiro Ă© reconstruĂ­do e Ă© mostrada a resolução do mĂ©todo em função da energia, que Ă© cerca de 55 g/cm2 considerando apenas um telescĂłpio, e 15 g/cm2 para o melhor caso, considerando o ângulo zenital de 20 graus. AlĂ©m disso, o mĂ©todo Ă© testado com algumas simulações cedidas pelo experimento VERITAS (Very Energetic Radiation Imaging Telescope Array System, pela sigla em inglĂŞs) para comparar com os resultados de nossas simulações. TambĂ©m foi feita a resolução da reconstrução da profundidade de máximo para chuveiros atmosfĂ©ricos de prĂłtons e ferro, que varia em torno de 80 g/cm2 para prĂłtons e em torno de 30 g/cm2 para ferro no caso chuveiros inclinados a um ângulo de 20°

    Chasing Gravitational Waves with the Chereknov Telescope Array

    No full text
    Presented at the 38th International Cosmic Ray Conference (ICRC 2023), 2023 (arXiv:2309.08219)2310.07413International audienceThe detection of gravitational waves from a binary neutron star merger by Advanced LIGO and Advanced Virgo (GW170817), along with the discovery of the electromagnetic counterparts of this gravitational wave event, ushered in a new era of multimessenger astronomy, providing the first direct evidence that BNS mergers are progenitors of short gamma-ray bursts (GRBs). Such events may also produce very-high-energy (VHE, > 100GeV) photons which have yet to be detected in coincidence with a gravitational wave signal. The Cherenkov Telescope Array (CTA) is a next-generation VHE observatory which aims to be indispensable in this search, with an unparalleled sensitivity and ability to slew anywhere on the sky within a few tens of seconds. New observing modes and follow-up strategies are being developed for CTA to rapidly cover localization areas of gravitational wave events that are typically larger than the CTA field of view. This work will evaluate and provide estimations on the expected number of of gravitational wave events that will be observable with CTA, considering both on- and off-axis emission. In addition, we will present and discuss the prospects of potential follow-up strategies with CTA

    Chasing Gravitational Waves with the Chereknov Telescope Array

    No full text
    Presented at the 38th International Cosmic Ray Conference (ICRC 2023), 2023 (arXiv:2309.08219)2310.07413International audienceThe detection of gravitational waves from a binary neutron star merger by Advanced LIGO and Advanced Virgo (GW170817), along with the discovery of the electromagnetic counterparts of this gravitational wave event, ushered in a new era of multimessenger astronomy, providing the first direct evidence that BNS mergers are progenitors of short gamma-ray bursts (GRBs). Such events may also produce very-high-energy (VHE, > 100GeV) photons which have yet to be detected in coincidence with a gravitational wave signal. The Cherenkov Telescope Array (CTA) is a next-generation VHE observatory which aims to be indispensable in this search, with an unparalleled sensitivity and ability to slew anywhere on the sky within a few tens of seconds. New observing modes and follow-up strategies are being developed for CTA to rapidly cover localization areas of gravitational wave events that are typically larger than the CTA field of view. This work will evaluate and provide estimations on the expected number of of gravitational wave events that will be observable with CTA, considering both on- and off-axis emission. In addition, we will present and discuss the prospects of potential follow-up strategies with CTA

    Performance of a proposed event-type based analysis for the Cherenkov Telescope Array

    Get PDF
    The Cherenkov Telescope Array (CTA) will be the next-generation observatory in the field of very-high-energy (20 GeV to 300 TeV) gamma-ray astroparticle physics. Classically, data analysis in the field maximizes sensitivity by applying quality cuts on the data acquired. These cuts, optimized using Monte Carlo simulations, select higher quality events from the initial dataset. Subsequent steps of the analysis typically use the surviving events to calculate one set of instrument response functions (IRFs). An alternative approach is the use of event types, as implemented in experiments such as the Fermi-LAT. In this approach, events are divided into sub-samples based on their reconstruction quality, and a set of IRFs is calculated for each sub-sample. The sub-samples are then combined in a joint analysis, treating them as independent observations. This leads to an improvement in performance parameters such as sensitivity, angular and energy resolution. Data loss is reduced since lower quality events are included in the analysis as well, rather than discarded. In this study, machine learning methods will be used to classify events according to their expected angular reconstruction quality. We will report the impact on CTA high-level performance when applying such an event-type classification, compared to the classical procedure

    Chasing Gravitational Waves with the Chereknov Telescope Array

    No full text
    Presented at the 38th International Cosmic Ray Conference (ICRC 2023), 2023 (arXiv:2309.08219)2310.07413International audienceThe detection of gravitational waves from a binary neutron star merger by Advanced LIGO and Advanced Virgo (GW170817), along with the discovery of the electromagnetic counterparts of this gravitational wave event, ushered in a new era of multimessenger astronomy, providing the first direct evidence that BNS mergers are progenitors of short gamma-ray bursts (GRBs). Such events may also produce very-high-energy (VHE, > 100GeV) photons which have yet to be detected in coincidence with a gravitational wave signal. The Cherenkov Telescope Array (CTA) is a next-generation VHE observatory which aims to be indispensable in this search, with an unparalleled sensitivity and ability to slew anywhere on the sky within a few tens of seconds. New observing modes and follow-up strategies are being developed for CTA to rapidly cover localization areas of gravitational wave events that are typically larger than the CTA field of view. This work will evaluate and provide estimations on the expected number of of gravitational wave events that will be observable with CTA, considering both on- and off-axis emission. In addition, we will present and discuss the prospects of potential follow-up strategies with CTA
    corecore