20,052 research outputs found
Dirac Triplet Extension of the MSSM
In this paper we explore extensions of the Minimal Supersymmetric Standard
Model involving two triplet chiral superfields that share a
superpotential Dirac mass yet only one of which couples to the Higgs fields.
This choice is motivated by recent work using two singlet superfields with the
same superpotential requirements. We find that, as in the singlet case, the
Higgs mass in the triplet extension can easily be raised to
without introducing large fine-tuning. For triplets that carry hypercharge, the
regions of least fine tuning are characterized by small contributions to the
parameter, and light stop squarks, ; the latter is a result of the dependence of
the triplet contribution to the Higgs mass. Despite such light stop masses,
these models are viable provided the stop-electroweakino spectrum is
sufficiently compressed.Comment: 26 pages, 4 figure
Indirect Effect of Supersymmetric Triplets in Stop Decays
We study an extension of the minimal supersymmetric standard model with a
zero hypercharge triplet, and the effect that such a particle has on stop
decays. This model has the capability of predicting a 125.5 GeV Higgs even in
the presence of light stops and it can modify the diphoton rate by means of the
extra charged fermion triplet coupled to the Higgs. Working in the limit where
the scalar triplet decouples, and with small values of mA, we find that the
fermion triplet can greatly affect the branching ratios of the stops, even in
the absence of a direct stop-triplet coupling. We compare the triplet extension
with the MSSM and discuss how the additional fields affect the search for stop
pair production.Comment: pdfLateX, 16 pages, 7 figures, 2 tables, Typos, minor changes.
Version published in JHE
Critical Lines and Massive Phases in Quantum Spin Ladders with Dimerization
We determine the existence of critical lines in dimerized quantum spin
ladders in their phase diagram of coupling constants using the finite-size DMRG
algorithm. We consider both staggered and columnar dimerization patterns, and
antiferromagnetic and ferromagnetic inter-leg couplings. The existence of
critical phases depends on the precise combination of these patterns. The
nature of the massive phases separating the critical lines are characterized
with generalized string order parameters that determine their valence bond
solid (VBS) content.Comment: 9 pages 10 figure
Inertial Coupling Method for particles in an incompressible fluctuating fluid
We develop an inertial coupling method for modeling the dynamics of
point-like 'blob' particles immersed in an incompressible fluid, generalizing
previous work for compressible fluids. The coupling consistently includes
excess (positive or negative) inertia of the particles relative to the
displaced fluid, and accounts for thermal fluctuations in the fluid momentum
equation. The coupling between the fluid and the blob is based on a no-slip
constraint equating the particle velocity with the local average of the fluid
velocity, and conserves momentum and energy. We demonstrate that the
formulation obeys a fluctuation-dissipation balance, owing to the
non-dissipative nature of the no-slip coupling. We develop a spatio-temporal
discretization that preserves, as best as possible, these properties of the
continuum formulation. In the spatial discretization, the local averaging and
spreading operations are accomplished using compact kernels commonly used in
immersed boundary methods. We find that the special properties of these kernels
make the discrete blob a particle with surprisingly physically-consistent
volume, mass, and hydrodynamic properties. We develop a second-order
semi-implicit temporal integrator that maintains discrete
fluctuation-dissipation balance, and is not limited in stability by viscosity.
Furthermore, the temporal scheme requires only constant-coefficient Poisson and
Helmholtz linear solvers, enabling a very efficient and simple FFT-based
implementation on GPUs. We numerically investigate the performance of the
method on several standard test problems...Comment: Contains a number of corrections and an additional Figure 7 (and
associated discussion) relative to published versio
Comprehensive theory of the relative phase in atom-field interactions
We explore the role played by the quantum relative phase in a well-known
model of atom-field interaction, namely, the Dicke model. We introduce an
appropriate polar decomposition of the atom-field relative amplitudes that
leads to a truly Hermitian relative-phase operator, whose eigenstates correctly
describe the phase properties, as we demonstrate by studying the positive
operator-valued measure derived from it. We find the probability distribution
for this relative phase and, by resorting to a numerical procedure, we study
its time evolution.Comment: 20 pages, 4 figures, submitted to Phys. Rev.
Supersymmetry without a light Higgs boson but with a light pseudoscalar
We consider the lambda-SUSY model, a version of the NMSSM with large lambda
H_1 H_2 S coupling, relaxing the approximation of large singlet mass and
negligible mixing of the scalar singlet with the scalar doublets. We show that
there are regions of the parameter space in which the lightest pseudoscalar can
be relatively light, with unusual consequences on the decay pattern of the
CP-even Higgs bosons and thus on the LHC phenomenology.Comment: 11 pages, 3 figures. v3: Conforms to published versio
Evaluation of the economic and environmental performance of low-temperature heat to power conversion using a reverse electrodialysis - Multi-effect distillation system
In the examined heat engine, reverse electrodialysis (RED) is used to generate electricity from the salinity difference between two artificial solutions. The salinity gradient is restored through a multi-effect distillation system (MED) powered by low-temperature waste heat at 100 ◦C. The current work presents the first comprehensive economic and environmental analysis of this advanced concept, when varying the number of MED effects, the system sizing, the salt of the solutions, and other key parameters. The levelized cost of electricity (LCOE) has been calculated, showing that competitive solutions can be reached only when the system is at least medium to large scale. The lowest LCOE, at about 0.03 €/kWh, is achieved using potassium acetate salt and six MED effects while reheating the solutions. A similar analysis has been conducted when using the system in energy storage mode, where the two regenerated solutions are stored in reservoir tanks and the RED is operating for a few hours per day, supplying valuable peak power, resulting in a LCOE just below 0.10 €/kWh. A life-cycle assessment has been also carried out, showing that the case with the lowest environmental impact is the same as the one with the most attractive economic performance. Results indicate that the material manufacturing has the main impact; primarily the metallic parts of the MED. Overall, this study highlights the development efforts required in terms of both membrane performance and cost reduction, in order to make this technology cost effective in the future
Engineering Time-Reversal Invariant Topological Insulators With Ultra-Cold Atoms
Topological insulators are a broad class of unconventional materials that are
insulating in the interior but conduct along the edges. This edge transport is
topologically protected and dissipationless. Until recently, all existing
topological insulators, known as quantum Hall states, violated time-reversal
symmetry. However, the discovery of the quantum spin Hall effect demonstrated
the existence of novel topological states not rooted in time-reversal
violations. Here, we lay out an experiment to realize time-reversal topological
insulators in ultra-cold atomic gases subjected to synthetic gauge fields in
the near-field of an atom-chip. In particular, we introduce a feasible scheme
to engineer sharp boundaries where the "edge states" are localized. Besides,
this multi-band system has a large parameter space exhibiting a variety of
quantum phase transitions between topological and normal insulating phases. Due
to their unprecedented controllability, cold-atom systems are ideally suited to
realize topological states of matter and drive the development of topological
quantum computing.Comment: 11 pages, 6 figure
A Search for Planetary Nebulae With the SDSS: the outer regions of M31
We have developed a method to identify planetary nebula (PN) candidates in
imaging data of the Sloan Digital Sky Survey (SDSS). This method exploits the
SDSS' five-band sampling of emission lines in PN spectra, which results in a
color signature distinct from that of other sources. Selection criteria based
on this signature can be applied to nearby galaxies in which PNe appear as
point sources. We applied these criteria to the whole area of M31 as scanned by
the SDSS, selecting 167 PN candidates that are located in the outer regions of
M31. The spectra of 80 selected candidates were then observed with the 2.2m
telescope at Calar Alto Observatory. These observations and cross-checks with
literature data show that our method has a selection rate efficiency of about
90%, but the efficiency is different for the different groups of PNe
candidates.
In the outer regions of M31, PNe trace different well-known morphological
features like the Northern Spur, the NGC205 Loop, the G1 Clump, etc. In
general, the distribution of PNe in the outer region 8<R<20 kpc along the minor
axis shows the "extended disk" - a rotationally supported low surface
brightness structure with an exponential scale length of 3.21+/-0.14 kpc and a
total mass of ~10^10 M_{\sun}, which is equivalent to the mass of M33. We
report the discovery of three PN candidates with projected locations in the
center of Andromeda NE, a very low surface brightness giant stellar structure
in the outer halo of M31. Two of the PNe were spectroscopically confirmed as
genuine PNe. These two PNe are located at projected distances along the major
axis of ~48 Kpc and ~41 Kpc from the center of M31 and are the most distant PNe
in M31 found up to now.Comment: 58 pages, 17 figures, 2 tables, Accepted to Astronomical Journa
- …