36 research outputs found

    AgroTutor: A Mobile Phone Application Supporting Agricultural Sustainable Intensification

    Get PDF
    Traditional agricultural extension services rely on extension workers, especially in countries with large agricultural areas. In order to increase adoption of sustainable agriculture, the recommendations given by such services must be adapted to local conditions and be provided in a timely manner. The AgroTutor mobile application was built to provide highly specific and timely agricultural recommendations to farmers across Mexico and complement the work of extension agents. At the same time, AgroTutor provides direct contributions to the United Nations Sustainable Development Goals, either by advancing their implementation or providing local data systems to measure and monitor specific indicators such as the proportion of agricultural area under productive and sustainable agriculture. The application is freely available and allows farmers to geo-locate and register plots and the crops grown there, using the phone’s in-built GPS, or alternatively, on top of very high-resolution imagery. Once a crop and some basic data such as planting date and cultivar type have been registered, the app provides targeted information such as weather, potential and historical yield, financial benchmarking information, data-driven recommendations as well as commodity price forecasts. Farmers are also encouraged to contribute in-situ information, e.g., soils, management, and yield data. The information can then be used by crop models, which, in turn, would send tailored results back to the farmers. Initial feedback from farmers and extension agents has already improved some of the app’s characteristics. More enhancements are planned for inclusion in the future to increase the app’s function as a decision support tool

    AgroTutor: A Mobile Phone Application Supporting Sustainable Agricultural Intensification

    Get PDF
    Traditional agricultural extension services rely on extension workers, especially in countries with large agricultural areas. In order to increase adoption of sustainable agriculture, the recommendations given by such services must be adapted to local conditions and be provided in a timely manner. The AgroTutor mobile application was built to provide highly specific and timely agricultural recommendations to farmers across Mexico and complement the work of extension agents. At the same time, AgroTutor provides direct contributions to the United Nations Sustainable Development Goals, either by advancing their implementation or providing local data systems to measure and monitor specific indicators such as the proportion of agricultural area under productive and sustainable agriculture. The application is freely available and allows farmers to geo-locate and register plots and the crops grown there, using the phone’s built-in GPS, or alternatively, on top of very high-resolution imagery. Once a crop and some basic data such as planting date and cultivar type have been registered, the application provides targeted information such as weather, potential and historical yield, financial benchmarking information, data-driven recommendations, and commodity price forecasts. Farmers are also encouraged to contribute in-situ information, e.g., soils, management, and yield data. The information can then be used by crop models, which, in turn, send tailored results back to the farmers. Initial feedback from farmers and extension agents has already improved some of the application’s characteristics. More enhancements are planned for inclusion in the future to increase the application’s function as a decision support tool

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    'Clostridium mediterraneense,' a new bacterial species isolated from the human gut.

    No full text
    International audienceWe report the main characteristics of 'Clostridium mediterraneense' sp. nov., strain Marseille-P2434(T) (CSUR P2434), a new species within the genus Clostridium. This strain was isolated from the gut microbiota of a 66-year-old diabetic patient in Marseille, France

    ‘Bacteroides cutis,’ a new bacterial species isolated from human skin

    No full text
    We report the main characteristics of ‘Bacteroides cutis’ sp. nov., strain Marseille-P4118T (= CSUR P4118), a new species within the genus Bacteroides. This strain was isolated from a skin sample of a 75-year-old man from Marseille. Keywords: Bacteroides cutis, culturomics, intensive care unit patient, skin microbiota, taxonogenomic

    Draft genome sequence of Coxiella burnetii Dog Utad, a strain isolated from a dog-related outbreak of Q fever

    Get PDF
    Coxiella burnetii Dog Utad, with a 2 008 938 bp genome is a strain isolated from a parturient dog responsible for a human familial outbreak of acute Q fever in Nova Scotia, Canada. Its genotype, determined by multispacer typing, is 21; the only one found in Canada that includes Q212, which causes endocarditis. Only 107 single nucleotide polymorphisms and 16 INDELs differed from Q212, suggesting a recent clonal radiation
    corecore