336 research outputs found

    Neutrino Spin Flavor Precession and Leptogenesis

    Full text link
    We argue that \Delta L=2 neutrino spin flavor precession, induced by the primordial magnetic fields, could have a significant impact on the leptogenesis process that accounts for the baryon asymmetry of the universe. Although the extra galactic magnetic fields is extremely weak at present time (about 10^{-9} Gauss), the primordial magnetic filed at the electroweak scale could be quite strong (of order 10^{17} Gauss). Therefore, at this scale, the effects of the spin flavor precession are not negligible. We show that the lepton asymmetry may be reduced by 50% due to the spin flavor precession. In addition, the leptogenesis will have different feature from the standard scenario of leptogenesis, where the lepton asymmetry continues to oscillate even after the electroweak phase transition.Comment: 5 pages, one figure. References adde

    A sharp incisor tool for predator house mice back to the wild

    Get PDF
    The house mouse (Mus musculus domesticus), as a successful invasive species worldwide, has to forage a variety of resources. Subantarctic mice display among the most notable diet shift from the usual omnivorous–granivorous diet, relying on a larger proportion of terrestrial animal prey. In agreement, a recent study of their mandible morphology evidenced an evolution of their mandible shape to optimize incisor biting and hence seize preys. Here, the incisors themselves are the focus of a morphometric analysis combined with a 3D study of their internal structure, aiming at a comparison between subantarctic populations (Guillou island, Kerguelen archipelago) with a range of western European continental, commensal mice. The predatory foraging behavior of Guillou mice was indeed associated with a sharper bevel of the lower incisor, which appears as an efficient morphology for piercing prey. The incisor of these mice also displays a reduced pulp cavity, suggesting slower eruption counterbalancing a reduced abrasion on such soft food material. The dynamics of the ever‐growing incisor may thus allow adaptive incisor sculpting and participate to the success of mice in foraging diverse resources

    The baryogenesis window in the MSSM

    Get PDF
    Thermal two-loop QCD corrections associated with light stops have a dramatic effect on the strength of the MSSM electroweak phase transition, making it more strongly first order as required for the viability of electroweak baryogenesis. We perform a perturbative analysis of the transition strength in this model, including these important contributions, extending previous work to arbitrary values of the pseudoscalar Higgs boson mass, m_A. We find a strong enough transition in a region with 2 120 GeV, a light Higgs boson with nearly standard couplings, and mass below 85 GeV within the reach of LEP II, and one stop not much heavier than the top quark. In addition, we give a qualitative discussion of the parameter space dependence of the transition strength and comment on the possibility that the transition turns to a crossover for sufficiently large Higgs masses.Comment: 33 pages, latex2e, 5 figures, epsfig.sty. Final version to appear in Nuclear Physics

    A Consistent Scenario for B to PS Decays

    Full text link
    We consider B to PS decays where P stands for pseudoscalar and S for a heavy (~1500 MeV) scalar meson. We achieve agreement with available experimental data -- which includes a two orders of magnitude hierarchy -- assuming the scalars mesons are two quark states. The contribution of the dipolar penguin operator O_{11} is quantified.Comment: 10 pages, no figure

    Baryogenesis at Low Reheating Temperatures

    Full text link
    We note that the maximum temperature during reheating can be much greater than the reheating temperature TrT_r at which the Universe becomes radiation dominated. We show that the Standard Model anomalous (B+L)(B+L)-violating processes can therefore be in thermal equilibrium for 1 GeV \simlt T_{r}\ll 100 GeV. Electroweak baryogenesis could work and the traditional upper bound on the Higgs mass coming from the requirement of the preservation of the baryon asymmetry may be relaxed. Alternatively, the baryon asymmetry may be reprocessed by sphaleron transitions either from a (BL)(B-L) asymmetry generated by the Affleck-Dine mechanism or from a chiral asymmetry between eRe_R and eLe_L in a BL=0B-L = 0 Universe. Our findings are also relevant to the production of the baryon asymmetry in large extra dimension models.Comment: 4 pages, version to appear in PRL: references added, new titl

    Supersymmetric contributions to Bˉsϕπ0\bar{B}_s \to \phi \pi^0 and Bˉsϕρ0\bar{B}_s \to \phi \rho^0 decays in SCET

    Full text link
    We study the decay modes Bˉsϕπ0\bar{B}_s\to \phi \pi^0 and Bˉsϕρ0\bar{B}_s\to \phi \rho^0 using Soft Collinear Effective Theory. Within Standard Model and including the error due to the SU(3) breaking effect in the SCET parameters we find that BR Bˉsϕπ0=712+1+2×108\bar{B}_s\to \phi \pi^0 =7_{-1-2}^{+1+2}\times 10^{-8} and BR Bˉsϕπ0=914+1+3×108\bar{B}_s\to \phi \pi^0=9_{-1-4}^{+1+3}\times 10^{-8} corresponding to solution 1 and solution 2 of the SCET parameters respectively.For the decay mode Bˉsϕρ0\bar{B}_s\to \phi \rho^0, we find that BR Bˉsϕρ0=20.2112+1+9×108\bar{B}_s\to \phi \rho^0 = 20.2^{+1+9}_{-1-12}\times 10^{-8} and BR Bˉsϕρ0=34.01.522+1.5+15×108 \bar{B}_s\to \phi \rho^0 = 34.0^{+1.5 + 15}_{-1.5-22}\times 10^{-8} corresponding to solution 1 and solution 2 of the SCET parameters respectively. We extend our study to include supersymmetric models with non-universal A-terms where the dominant contributions arise from diagrams mediated by gluino and chargino exchanges. We show that gluino contributions can not lead to an enhancement of the branching ratios of Bˉsϕπ0\bar{B}_s\to \phi \pi^0 and Bˉsϕρ0\bar{B}_s\to \phi \rho^0. In addition, we show that SUSY contributions mediated by chargino exchange can enhance the branching ratio of Bˉsϕπ0\bar{B}_s\to \phi \pi^0 by about 14% with respect to the SM prediction. For the branching ratio of Bˉsϕρ0\bar{B}_s\to \phi \rho^0, we find that SUSY contributions can enhance its value by about 1% with respect to the SM prediction.Comment: 25 pages,5 figures, version accepted for publicatio

    CP-Violating Asymmetries in Charmless Non-Leptonic Decays BPP,PV,VVB \to PP, PV, VV in the Factorization Approach

    Full text link
    We present estimates of the direct (in decay amplitudes) and indirect (mixing- induced) CP-violating asymmetries in the non-leptonic charmless two-body decay rates for BPPB \to PP, BPVB \to PV and BVVB \to VV decays and their charged conjugates, where P(V) is a light pseudoscalar (vector) meson. These estimates are based on a generalized factorization approach making use of next-to-leading order perturbative QCD contributions which generate the required strong phases. No soft final state interactions are included. We study the dependence of the asymmetries on a number of input parameters and show that there are at least two (possibly three) classes of decays in which the asymmetries are parametrically stable in this approach. The decay modes of particular interest are: \optbar{B^0} \to \pi^+ \pi^-, \optbar{B^0} \to K_S^0 \pi^0, \optbar{B^0} \to K_S^0 \eta^\prime, \optbar{B^0} \to K_S^0 \eta and \optbar{B^0} \to \rho^+ \rho^-. Likewise, the CP-violating asymmetry in the decays \optbar{B^0} \to K_S^0 h^0 with h0=π0,KS0,η,ηh^0=\pi^0,K_S^0, \eta,\eta^\prime is found to be parametrically stable and large. Measurements of these asymmetries will lead to a determination of the phases sin2α\sin 2\alpha and sin2β\sin 2 \beta and we work out the relationships in these modes in the present theoretical framework. We also show the extent of the so-called "penguin pollution" in the rate asymmetry ACP(π+π)A_{CP}(\pi^+ \pi^-) and of the "tree shadow" in the asymmetry ACP(KS0η)A_{CP}(K_S^0\eta^\prime) which will effect the determination of sin2α\sin 2 \alpha and sin2β\sin 2 \beta from the respective measurements. CP-violating asymmetries in B±π±ηB^\pm \to \pi^\pm \eta^\prime, B±K±ηB^\pm \to K^{*\pm} \eta, B±K±ηB^\pm \to K^{*\pm} \eta^\prime and B±K±ρ0B^\pm \to K^{*\pm}\rho^0 are potentially interesting and are studied here.Comment: 42 pages (LaTex) including 19 figures, requires epsfig.sty; submitted to Phys. Rev.

    Flavour physics constraints in the BMSSM

    Full text link
    We study the implications of the presence of the two leading-order, non-renormalizable operators in the Higgs sector of the MSSM to flavour physics observables. We identify the constraints of flavour physics on the parameters of the BMSSM when we: a) focus on a region of parameters for which electroweak baryogenesis is feasible, b) use a CMSSM-like parametrization, and c) consider the case of a generic NUHM-type model. We find significant differences as compared to the standard MSSM case.Comment: 22 pages, 7 figure

    Constraints on the phase γ\gamma and new physics from BKπB\to K\pi Decays

    Full text link
    Recent results from CLEO on BKπB\to K\pi indicate that the phase γ\gamma may be substantially different from that obtained from other fit to the KM matrix elements in the Standard Model. We show that γ\gamma extracted using BKπ,ππB\to K\pi, \pi\pi is sensitive to new physics occurring at loop level. It provides a powerful method to probe new physics in electroweak penguin interactions. Using effects due to anomalous gauge couplings as an example, we show that within the allowed ranges for these couplings information about γ\gamma obtained from BKπ,ππB\to K \pi, \pi\pi can be very different from the Standard Model prediction.Comment: Revised version with analysis done using new data from CLEO. RevTex, 11 Pages with two figure
    corecore