3 research outputs found

    Supervised Classifications of Optical Water Types in Spanish Inland Waters

    Get PDF
    Remote sensing of lake water quality assumes there is no universal method or algorithm that can be applied in a general way on all inland waters, which usually have different in-water components affecting their optical properties. Depending on the place and time of year, the lake dynamics, and the particular components of the water, non-tailor-designed algorithms can lead to large errors or lags in the quantification of the water quality parameters, such as the suspended mineral sediments, dissolved organic matter, and chlorophyll-a concentration. Selecting the most suitable algorithm for each type of water is not a simple matter. One way to make selecting the most suitable water quality algorithm easier on each occasion is by knowing ahead of time the type of water being handled. This approach is used, for instance, in the Lake Water Quality production chain of the Copernicus Global Land Service. The objective of this work is to determine which supervised classification approach might give the most accurate results. We use a dataset of manually labeled pixels on lakes and reservoirs in Eastern Spain. High-resolution images from the Multispectral Instrument sensor on board the ESA Sentinel-2 satellite, atmospherically corrected with the Case 2 Regional Coast Colour algorithm, are used as the basis for extracting the pixels for the dataset. Three families of different supervised classifiers have been implemented and compared: the K-nearest neighbor, decision trees, and support vector machine. Based on the results, the most appropriate for our study area is the random forest classifier, which was selected and applied on a series of images to derive the temporal series of the optical water types per lake. An evaluation of the results is presented, and an analysis is made using expert knowledge

    Predictive Power of the "Trigger Tool" for the detection of adverse events in general surgery: a multicenter observational validation study

    Get PDF
    Background In spite of the global implementation of standardized surgical safety checklists and evidence-based practices, general surgery remains associated with a high residual risk of preventable perioperative complications and adverse events. This study was designed to validate the hypothesis that a new “Trigger Tool” represents a sensitive predictor of adverse events in general surgery. Methods An observational multicenter validation study was performed among 31 hospitals in Spain. The previously described “Trigger Tool” based on 40 specific triggers was applied to validate the predictive power of predicting adverse events in the perioperative care of surgical patients. A prediction model was used by means of a binary logistic regression analysis. Results The prevalence of adverse events among a total of 1,132 surgical cases included in this study was 31.53%. The “Trigger Tool” had a sensitivity and specificity of 86.27% and 79.55% respectively for predicting these adverse events. A total of 12 selected triggers of overall 40 triggers were identified for optimizing the predictive power of the “Trigger Tool”. Conclusions The “Trigger Tool” has a high predictive capacity for predicting adverse events in surgical procedures. We recommend a revision of the original 40 triggers to 12 selected triggers to optimize the predictive power of this tool, which will have to be validated in future studies

    Investigación educativa en las aulas de primaria

    Get PDF
    Reúne trabajos derivados de la experiencias de diversos docentes en educación primaria en los siguientes temas: Tecnología de Información y Comunicación, educación inclusiva, enseñanza de la música, educación física, enseñanza de la historia, acoso escolar, auto-evaluación, métodos de enseñanza, inteligencia emocional, percepción del alumno, marco cognitivo en comprensión lectora y comunicación escuela-familia
    corecore