954 research outputs found

    Sizes and albedos of Mars-crossing asteroids from WISE/NEOWISE data

    Full text link
    Context. Mars-crossing asteroids (MCs) are a dynamically unstable group between the main belt and the near-Earth populations. Characterising the physical properties of a large sample of MCs can help to understand the original sources of many near-Earth asteroids, some of which may produce meteorites on Earth. Aims. Our aim is to provide diameters and albedos of MCs with available WISE/NEOWISE data. Methods. We used the near-Earth asteroid thermal model to find the best-fitting values of equivalent diameter and, whenever possible, the infrared beaming parameter. With the diameter and tabulated asteroid absolute magnitudes we also computed the visible geometric albedos. Results. We determined the diameters and beaming parameters of 404 objects observed during the fully cryogenic phase of the WISE mission, most of which have not been published elsewhere. We also obtained 1572 diameters from data from the 3-Band and posterior non-cryogenic phases using a default value of beaming parameter. The average beaming parameter is 1.2 +/- 0.2 for objects smaller than 10 km, which constitute most of our sample. This is higher than the typical value of 1.0 found for the whole main belt and is possibly related to the fact that WISE is able to observe many more small objects at shorter heliocentric distances, i.e. at higher phase angles. We argue that this is a better default value for modelling Mars-crossing asteroids from the WISE/NEOWISE catalogue and discuss the effects of this choice on the diameter and albedo distributions. We find a double-peaked distribution for the visible geometric albedos, which is expected since this population is compositionally diverse and includes objects in the major spectral complexes. However, the distribution of beaming parameters is homogeneous for both low- and high-albedo objects.Comment: 8 pages, 6 figures, accepted for publication in Astronomy & Astrophysic

    Reconstructing the size distribution of the primordial Main Belt

    Full text link
    In this work we aim to constrain the slope of the size distribution of main-belt asteroids, at their primordial state. To do so we turn out attention to the part of the main asteroid belt between 2.82 and 2.96~AU, the so-called "pristine zone", which has a low number density of asteroids and few, well separated asteroid families. Exploiting these unique characteristics, and using a modified version of the hierarchical clustering method we are able to remove the majority of asteroid family members from the region. The remaining, background asteroids should be of primordial origin, as the strong 5/2 and 7/3 mean-motion resonances with Jupiter inhibit transfer of asteroids to and from the neighboring regions. The size-frequency distribution of asteroids in the size range 17<D(km)<7017<D(\rm{km})<70 has a slope q1q\simeq-1. Using Monte-Carlo methods, we are able to simulate, and compensate for the collisional and dynamical evolution of the asteroid population, and get an upper bound for its size distribution slope q=1.43q=-1.43. In addition, applying the same 'family extraction' method to the neighboring regions, i.e. the middle and outer belts, and comparing the size distributions of the respective background populations, we find statistical evidence that no large asteroid families of primordial origin had formed in the middle or pristine zones

    Asteroid occultations today and tomorrow: toward the GAIA era

    Get PDF
    Context: Observation of star occultations is a powerful tool to determine shapes and sizes of asteroids. This is key information necessary for studying the evolution of the asteroid belt and to calibrate indirect methods of size determination, such as the models used to analyze thermal infrared observations. Up to now, the observation of asteroid occultations is an activity essentially secured by amateur astronomers equipped with small, portable equipments. However, the accuracy of the available ephemeris prevents accurate predictions of the occultation events for objects smaller than ~100 km. Aims: We investigate current limits in predictability and observability of asteroid occultations, and we study their possible evolution in the future, when high accuracy asteroid orbits and star positions (such as those expected from the mission Gaia of the European Space Agency) will be available. Methods: We use a simple model for asteroid ephemeris uncertainties and numerical algorithms for estimating the limits imposed by the instruments, assuming realistic CCD performances and asteroid size distribution, to estimate the expected occultation rate under different conditions. Results: We show that high accuracy ephemerides which will be available in the future will extend toward much smaller asteroids the possibility of observing asteroid occultations, greatly increasing the number of events and objects involved. A complete set of size measurements down to ~10 km main belt asteroids could be obtained in a few years, provided that a small network of ground-based 1m telescopes are devoted to occultation studies

    Asteroid Models from Multiple Data Sources

    Full text link
    In the past decade, hundreds of asteroid shape models have been derived using the lightcurve inversion method. At the same time, a new framework of 3-D shape modeling based on the combined analysis of widely different data sources such as optical lightcurves, disk-resolved images, stellar occultation timings, mid-infrared thermal radiometry, optical interferometry, and radar delay-Doppler data, has been developed. This multi-data approach allows the determination of most of the physical and surface properties of asteroids in a single, coherent inversion, with spectacular results. We review the main results of asteroid lightcurve inversion and also recent advances in multi-data modeling. We show that models based on remote sensing data were confirmed by spacecraft encounters with asteroids, and we discuss how the multiplication of highly detailed 3-D models will help to refine our general knowledge of the asteroid population. The physical and surface properties of asteroids, i.e., their spin, 3-D shape, density, thermal inertia, surface roughness, are among the least known of all asteroid properties. Apart for the albedo and diameter, we have access to the whole picture for only a few hundreds of asteroids. These quantities are nevertheless very important to understand as they affect the non-gravitational Yarkovsky effect responsible for meteorite delivery to Earth, or the bulk composition and internal structure of asteroids.Comment: chapter that will appear in a Space Science Series book Asteroids I

    A successful search for hidden Barbarians in the Watsonia asteroid family

    Full text link
    Barbarians, so named after the prototype of this class (234) Barbara, are a rare class of asteroids exhibiting anomalous polarimetric properties. Their very distinctive feature is that they show negative polarization at relatively large phase-angles, where all 'normal' asteroids show positive polarization. The origin of the Barbarian phenomenon is unclear, but it seems to be correlated with the presence of anomalous abundances of spinel, a mineral usually associated with the so-called Calcium Aluminum-rich inclusions (CAIs) on meteorites. Since CAIs are samples of the oldest solid matter identified in our solar system, Barbarians are very interesting targets for investigations. Inspired by the fact that some of the few known Barbarians are members of, or very close to the dynamical family of Watsonia, we have checked whether this family is a major repository of Barbarians, in order to obtain some hints about their possible collisional origin. We have measured the linear polarization of a sample of nine asteroids which are members of the Watsonia family within the phase-angle range 17-21 DEG. We found that seven of them exhibit the peculiar Barbarian polarization signature, and we conclude that the Watsonia family is a repository of Barbarian asteroids. The new Barbarians identified in our analysis will be important to confirm the possible link between the Barbarian phenomenon and the presence of spinel on the surface.Comment: Accepted by MNRA

    Determination of physical properties of the asteroid (41) Daphne from interferometric observations in the thermal infrared

    Full text link
    We describe interferometric observations of the asteroid (41) Daphne in the thermal infrared obtained with the Mid-Infrared Interferometric Instrument (MIDI) of the Very Large Telescope Interferometer (VLTI). We derived the size and the surface thermal properties of (41) Daphne by means of a thermophysical model (TPM), which is used for the interpretation of interferometric data for the first time. From our TPM analysis, we derived a volume equivalent diameter for (41) Daphne of 189 km, using a non-convex 3-D shape model derived from optical lightcurves and adaptive optics images (B. Carry, private communication). On the other hand, when using the convex shape of Kaasalainen et al. (2002. Icarus 159, 369-395) in our TPM analysis, the resulting volume equivalent diameter of (41) Daphne is between 194 and 209 km, depending on the surface roughness. The shape of the asteroid is used as an a priori information in our TPM analysis. No attempt is made to adjust the shape to the data. Only the size of the asteroid and its thermal parameters (albedo, thermal inertia and roughness) are adjusted to the data. We estimated our model systematic uncertainty to be of 4% and of 7% on the determination of the asteroid volume equivalent diameter depending on whether the non-convex or the convex shape is used, respectively. In terms of thermal properties, we derived a value of the surface thermal inertia smaller than 50 J m-2 s-0.5 K-1 and preferably in the range between 0 and 30 J m-2 s-0.5 K-1. Our TPM analysis also shows that Daphne has a moderate macroscopic surface roughness.Comment: 44 pages, 8 figures, 3 table

    Heating of near-Earth objects and meteoroids due to close approaches to the Sun

    Full text link
    It is known that near-Earth objects (NEOs) during their orbital evolution may often undergo close approaches to the Sun. Indeed it is estimated that up to ~70% of them end their orbital evolution colliding with the Sun. Starting from the present orbital properties, it is possible to compute the most likely past evolution for every NEO, and to trace its distance from the Sun. We find that a large fraction of the population may have experienced in the past frequent close approaches, and thus, as a consequence, a considerable Sun-driven heating, not trivially correlated to the present orbits. The detailed dynamical behaviour, the rotational and the thermal properties of NEOs determine the exact amount of the resulting heating due to the Sun. In the present paper we discuss the general features of the process, providing estimates of the surface temperature reached by NEOs during their evolution. Moreover, we investigate the effects of this process on meteor-size bodies, analyzing possible differences with the NEO population. We also discuss some possible effects of the heating which can be observed through remote sensing by ground-based surveys or space missions.Comment: 8 pages, 5 figures, accepted by MNRA
    corecore