707 research outputs found

    Fin whale survival and abundance in the Gulf of St. Lawrence, Canada

    Full text link

    mTORC1 Controls Phase Separation and the Biophysical Properties of the Cytoplasm by Tuning Crowding

    Get PDF
    International audienceMacromolecular crowding has a profound impact on reaction rates and the physical properties of the cell interior, but the mechanisms that regulate crowding are poorly understood. We developed genetically encoded multimeric nanoparticles (GEMs) to dissect these mechanisms. GEMs are homomultimeric scaffolds fused to a fluorescent protein that self-assemble into bright, stable particles of defined size and shape. By combining tracking of GEMs with genetic and pharmacological approaches, we discovered that the mTORC1 pathway can modulate the effective diffusion coefficient of particles ≥20 nm in diameter more than 2-fold by tuning ribosome concentration, without any discernable effect on the motion of molecules ≤5 nm. This change in ribosome concentration affected phase separation both in vitro and in vivo. Together, these results establish a role for mTORC1 in controlling both the mesoscale biophysical properties of the cytoplasm and biomolecular condensation

    Large Deviations Analysis for Distributed Algorithms in an Ergodic Markovian Environment

    Get PDF
    We provide a large deviations analysis of deadlock phenomena occurring in distributed systems sharing common resources. In our model transition probabilities of resource allocation and deallocation are time and space dependent. The process is driven by an ergodic Markov chain and is reflected on the boundary of the d-dimensional cube. In the large resource limit, we prove Freidlin-Wentzell estimates, we study the asymptotic of the deadlock time and we show that the quasi-potential is a viscosity solution of a Hamilton-Jacobi equation with a Neumann boundary condition. We give a complete analysis of the colliding 2-stacks problem and show an example where the system has a stable attractor which is a limit cycle

    Durvalumab as monotherapy and in combination therapy in patients with lymphoma or chronic lymphocytic leukemia: The FUSION NHL 001 trial.

    Get PDF
    BACKGROUND: Studies suggest that immune checkpoint inhibitors may represent a promising strategy for boosting immune responses and improving the antitumor activity of standard therapies in patients with relapsed/refractory hematologic malignancies. AIMS: Phase 1/2 FUSION NHL 001 was designed to determine the safety and efficacy of durvalumab, an anti-programmed death ligand 1 (PD-L1) antibody, combined with standard-of-care therapies for lymphoma or chronic lymphocytic leukemia (CLL). METHODS AND RESULTS: The primary endpoints were to determine the recommended phase 2 dose of the drugs used in combination with durvalumab (durvalumab was administered at the previously recommended dose of 1500 mg every 4 weeks) and to assess safety and tolerability. Patients were enrolled into one of four arms: durvalumab monotherapy (Arm D) or durvalumab in combination with lenalidomide ± rituximab (Arm A), ibrutinib (Arm B), or rituximab ± bendamustine (Arm C). A total of 106 patients with relapsed/refractory lymphoma were enrolled. All but two patients experienced at least one treatment-emergent adverse event (TEAE); those not experiencing a TEAE were in Arm C (diffuse large B-cell lymphoma [DLBCL]) and Arm D (DLBCL during the durvalumab monotherapy treatment period). No new safety signals were identified, and TEAEs were consistent with the respective safety profiles for each study treatment. Across the study, patients with follicular lymphoma (FL; n = 23) had an overall response rate (ORR) of 59%; ORR among DLBCL patients (n = 37) was 18%. Exploratory biomarker analysis showed that response to durvalumab monotherapy or combination therapy was associated with higher interferon-γ signature scores in patients with FL (p = .02). CONCLUSION: Durvalumab as monotherapy or in combination is tolerable but requires close monitoring. The high rate of TEAEs during this study may reflect on the difficulty in combining durvalumab with full doses of other agents. Durvalumab alone or in combination appeared to add limited benefit to therapy

    Verticalization of bacterial biofilms

    Full text link
    Biofilms are communities of bacteria adhered to surfaces. Recently, biofilms of rod-shaped bacteria were observed at single-cell resolution and shown to develop from a disordered, two-dimensional layer of founder cells into a three-dimensional structure with a vertically-aligned core. Here, we elucidate the physical mechanism underpinning this transition using a combination of agent-based and continuum modeling. We find that verticalization proceeds through a series of localized mechanical instabilities on the cellular scale. For short cells, these instabilities are primarily triggered by cell division, whereas long cells are more likely to be peeled off the surface by nearby vertical cells, creating an "inverse domino effect". The interplay between cell growth and cell verticalization gives rise to an exotic mechanical state in which the effective surface pressure becomes constant throughout the growing core of the biofilm surface layer. This dynamical isobaricity determines the expansion speed of a biofilm cluster and thereby governs how cells access the third dimension. In particular, theory predicts that a longer average cell length yields more rapidly expanding, flatter biofilms. We experimentally show that such changes in biofilm development occur by exploiting chemicals that modulate cell length.Comment: Main text 10 pages, 4 figures; Supplementary Information 35 pages, 15 figure

    Phase I pharmacokinetic and pharmacodynamic study of the prenyl transferase inhibitor AZD3409 in patients with advanced cancer

    Get PDF
    AZD3409 is an orally active double prodrug that was developed as a novel dual prenyltransferase inhibitor. The formation of the active metabolite AZD3409 acid is mediated by esterases in plasma and cells. The aim of this phase I study was to determine the maximum tolerated dose, toxicities, pharmacokinetics and pharmacodynamics of AZD3409. AZD3409 was administered orally to patients with advanced solid malignancies using an interpatient dose-escalation scheme starting at 500 mg AZD3409 once daily. Twenty-nine patients were treated at seven dose levels. The MTD of part A was defined as 750 mg b.i.d. in the fasted state. Adverse events were mainly gastrointestinal and the severity was on average mild to moderate and reversible. The dose-limiting toxicities were vomiting, diarrhoea and uncontrolled nausea. Pharmacokinetic studies of the prodrug and the active metabolite indicated dose proportionality. Pharmacodynamic studies showed that farnesyltransferase (FTase) was inhibited at all dose levels. In conclusion, chronic oral dosing with AZD3409 is feasible and results in significant inhibition of FTase activity. Pharmacodynamic studies revealed that the maximal FTase inhibition, estimated at 49±11%, appeared to be reached at AZD3409 acid plasma concentrations at which the occurrence of drug-related toxicity was low. This study supports the rationale to implement biological effect studies in clinical trials with biologically active anticancer drugs to define optimal dosing regimens

    Common Peptides Study of Aminoacyl-tRNA Synthetases

    Get PDF
    Aminoacyl tRNA synthetases (aaRSs) constitute an essential enzyme super-family, providing fidelity of the translation process of mRNA to proteins in living cells. They are common to all kingdoms and are of utmost importance to all organisms. It is thus of great interest to understand the evolutionary relationships among them and underline signature motifs defining their common domains.We utilized the Common Peptides (CPs) framework, based on extracted deterministic motifs from all aaRSs, to study family-specific properties. We identified novel aaRS–class related signatures that may supplement the current classification methods and provide a basis for identifying functional regions specific to each aaRS class. We exploited the space spanned by the CPs in order to identify similarities between aaRS families that are not observed using sequence alignment methods, identifying different inter-aaRS associations across different kingdom of life. We explored the evolutionary history of the aaRS families and evolutionary origins of the mitochondrial aaRSs. Lastly, we showed that prevalent CPs significantly overlap known catalytic and binding sites, suggesting that they have meaningful functional roles, as well as identifying a motif shared between aaRSs and a the Biotin-[acetyl-CoA carboxylase] synthetase (birA) enzyme overlapping binding sites in both families.The study presents the multitude of ways to exploit the CP framework in order to extract meaningful patterns from the aaRS super-family. Specific CPs, discovered in this study, may play important roles in the functionality of these enzymes. We explored the evolutionary patterns in each aaRS family and tracked remote evolutionary links between these families
    • …
    corecore