82 research outputs found

    The evolution of mountain permafrost in the context of climate change:: towards a comprehensive analysis of permafrost monitoring data from the Swiss Alps

    Get PDF
    In the Swiss Alps, permafrost occurs discontinuously and commonly has a temperature close to 0 °C. A reduction of Alpine permafrost area and volume is expected in the course of atmospheric warming, but to date, limited evidence is available for Alpine permafrost degradation. Permafrost warming or thaw is accompanied by structural changes in the subsurface, which endanger infrastructure by increasing kinematic activity or slope instability. Changes in the permafrost impact sediment transport to the valley bottom as well as gravitational natural hazards such as rock falls, landslides or debris flows. For these reasons, the quantitative analysis of past and potential future changes in the Alpine permafrost is of great interest and importance. The objective of this PhD project was to investigate observational data from the Swiss Permafrost Monitoring Network PERMOS using an interdisciplinary approach and to develop new methods for the homogenisation and quantitative analysis of long-term monitoring data. The main focus was on assessing changes in the energy fluxes at the ground surface as a function of the snow cover, as well as on evaluating permafrost response to different meteorological conditions and events. This PhD project was part of the research project The Evolution of Mountain Permafrost in Switzerland (TEMPS, 2011-2015), which used combined observational and model-based approaches and aimed at improving the consistency and completeness of permafrost monitoring data. One achievement of this PhD thesis consists of the development of data processing algorithms for filling data gaps in temperature time series and the quantification of resulting uncertainties. Moreover, algorithms for the approximation of the thermal insulation effect of the snow cover based on ground surface temperature (GST) data were developed. This was of particular importance because snow information is usually not available for the points of interest. Furthermore, possibilities for estimating temperature variations at depth based on GST data were evaluated. The information obtained about the propagation of the thermal signal into the ground led to new insights into the temperature dependency of rock glacier creep, which were supported by observational data. Data from more than 20 study sites were made comparable in order to quantify differences at the site- and the regional scale. The GST variability proved to be almost as high at the site scale as at the regional scale. This was explained by heterogeneous topo-climatic conditions as well as by the variable snow cover in the geographic context of the Swiss Alps. The roughness of the terrain played a key role, since it modifies the thermal insulation effect of the snow. Coarse-blocky terrains require more snow to be thermally insulated from the atmosphere and freeze more rapidly compared to smooth ground surfaces. The seasonal GST pattern showed that differences among sites and years were large in early winter, whereas GST were less variable in the summer season. Many locations showed similar snow conditions and therefore similar seasonal and inter-annual GST variations, which could not be explained by variations in air temperature. Although no overall increase in GST was found, the data indicate persistent warm conditions at the ground surface since 2009. Ground temperatures (GT) experienced an overall warming trend down to several tens of m depth over the past 10-25 years. This warming was most distinct in relatively cold permafrost with temperatures below -1 °C. Since the GT at depths between 10-30 m influences the kinematic activity of rock glaciers, the surface deformation rates of the majority of the observed rock glaciers reached maxima between 2013 and 2015. Surface deformation rates quantified by photogrammetry for selected rock glaciers showed an increase in the order of 200-600 % compared to 1990-1995 and 400-800 % compared to 1960-1980. Long-lasting warm conditions at the ground surface were identified to be the cause of the rise in ground temperature and the increased kinematic activity of rock glaciers. Compared with air temperature, where direct effect on the ground is limited to the snow-free period, the snow cover and its onset in early winter had a much greater influence on the heat and energy exchange at the ground surface. After one or two snow-poor winters, permafrost was able to regenerate thermally. Strong ground cooling occurred between 2005 and 2007, which caused a temporary trend reversal in the warming ground temperatures, limiting the effect of the particularly warm air temperatures between June 2006 and May 2007. Since Alpine permafrost is not in equilibrium with the current climatic conditions, recovery periods of efficient winter cooling will probably play a key role for its future evolution and preservation. Overall, the results of this PhD project contribute to an improved process understanding and put observed ground thermal and kinematic phenomena in the context of past and potential future changes of permafrost in the Swiss Alps

    Mapping and quantifying sediment transfer between the front of rapidly moving rock glaciers and torrential gullies

    Get PDF
    The sedimentary connection which may occur between the front of active rock glaciers and torrential channels is not well understood, despite its potential impact on the torrential activity characterizing the concerned catchments. In this study, DEMs of difference (DoDs) covering various time intervals between 2013 and 2016 were obtained from LiDAR-derived multitemporal DEMs for three rapidly moving rock glaciers located in the western Swiss Alps. The DoDs were used to map and quantify sediment transfer activity between the front of these rock glaciers and the corresponding underlying torrential gullies. Sediment transfer rates ranging between 1500 m3/y and 7800 m3/y have been calculated, depending on the sites. Sediment eroded from the fronts generally accumulated in the upper sectors of the torrential gullies where they were occasionally mobilized within small to medium sized debris flow events. A clear relation between the motion rates of the rock glaciers and the sediment transfer rates calculated at their fronts could be highlighted. Along with the size of the frontal areas, rock glacier creep rates influence thus directly sediment availability in the headwaters of the studied torrents. The frequency-magnitude of debris flow events varied between sites and was mainly related to the concordance of local factors such as topography, water availability, sediment availability or sediment type

    Using near‐surface ground temperature data to derive snow insulation and melt indices for mountain permafrost applications

    Get PDF
    The timing and duration of snow cover in areas of mountain permafrost affect the ground thermal regime by thermally insulating the ground from the atmosphere and modifying the radiation balance at the surface. Snow depth records, however, are sparse in high-mountain terrains. Here, we present data processing techniques to approximate the thermal insulation effect of snow cover. We propose some simple ‘snow thermal insulation indices’ using daily and weekly variations in ground surface temperatures (GSTs), as well as a ‘snow melt index’ that approximates the snow melt rate using a degree-day approach with air temperature during the zero curtain period. The indices consider point-specific characteristics and allow the reconstruction of past snow thermal conditions and snow melt rates using long GST time series. The application of these indices to GST monitoring data from the Swiss Alps revealed large spatial and temporal variability in the start and duration of the high-insulation period by snow and in the snow melt rate

    Erosion and sediment transfer processes at the front of rapidly moving rock glaciers: Systematic observations with automatic cameras in the western Swiss Alps

    Get PDF
    When connected to torrential channels, the fronts of active rock glaciers constitute important sediment sources for gravitational transfer processes. In this study, a 2013– 16 time series of in situ webcam images from the western Swiss Alps was analyzed to characterize the erosion processes responsible for sediment transfer at the front of three rapidly moving rock glaciers and their temporal behavior. The main erosion processes comprised rock fall, debris slide, superficial flow and concentrated flow. These processes were induced by (i) changes of the frontal slope angle produced by rock glacier advance, and (ii) increases in water content of the sediments at the rock glacier front due to melt processes and rainfall. Erosion almost ceased during winter, when the front was frozen and snow‐covered. The onset of snowmelt triggered an active period of high‐frequency erosion events. After the melt period, sediment transfer continued as occasional rock falls, while other erosion processes occurred only during or following rainfall events. Intense regressive erosion phases that triggered debris flows were rare and occurred when enhanced snowmelt and/or recurring rainfall induced substantial groundwater flow on the debris slopes directly below the rock glacier fronts

    Resolution capacity of geophysical monitoring regarding permafrost degradation induced by hydrological processes

    Get PDF
    Geophysical methods are often used to characterize and monitor the subsurface composition of permafrost. The resolution capacity of standard methods, i.e. electrical resistivity tomography and refraction seismic tomography, depends not only on static parameters such as measurement geometry, but also on the temporal variability in the contrast of the geophysical target variables (electrical resistivity and P-wave velocity). Our study analyses the resolution capacity of electrical resistivity tomography and refraction seismic tomography for typical processes in the context of permafrost degradation using synthetic and field data sets of mountain permafrost terrain. In addition, we tested the resolution capacity of a petrophysically based quantitative combination of both methods, the so-called 4-phase model, and through this analysed the expected changes in water and ice content upon permafrost thaw. The results from the synthetic data experiments suggest a higher sensitivity regarding an increase in water content compared to a decrease in ice content. A potentially larger uncertainty originates from the individual geophysical methods than from the combined evaluation with the 4-phase model. In the latter, a loss of ground ice can be detected quite reliably, whereas artefacts occur in the case of increased horizontal or vertical water flow. Analysis of field data from a well-investigated rock glacier in the Swiss Alps successfully visualized the seasonal ice loss in summer and the complex spatially variable ice, water and air content changes in an interannual comparison

    Landslide mapping in Switzerland with ENVISAT ASAR

    Get PDF
    In the frame of the IGARSS 2012 special session on ENVISAT the landslide mapping activities in Switzerland using ENVISAT ASAR data are presented. Between 2005 and 2010 the building up of a well suited archive over the Swiss Alps was realized through programming of all IS2 mode data during the snow free period. In recent years DINSAR and PSI based landslide inventory and monitoring products started to play an important role in the updating of hazard maps

    Mapping slope movements in Alpine environments using TerraSAR-X interferometric methods

    Get PDF
    Mapping slope movements in Alpine environments is an increasingly important task in the context of climate change and natural hazard management. We propose the detection, mapping and inventorying of slope movements using different interferometric methods based on TerraSAR-X satellite images. Differential SAR interferograms (DInSAR), Persistent Scatterer Interferometry (PSI), Short-Baseline Interferometry (SBAS) and a semi-automated texture image analysis are presented and compared in order to determine their contribution for the automatic detection and mapping of slope movements of various velocity rates encountered in Alpine environments. Investigations are conducted in a study region of about 6 km × 6 km located in the Western Swiss Alps using a unique large data set of 140 DInSAR scenes computed from 51 summer TerraSAR-X (TSX) acquisitions from 2008 to 2012. We found that PSI is able to precisely detect only points moving with velocities below 3.5 cm/yr in the LOS, with a root mean squared error of about 0.58 cm/yr compared to DGPS records. SBAS employed with 11 days summer interferograms increases the range of detectable movements to rates up to 35 cm/yr in the LOS with a root mean squared error of 6.36 cm/yr, but inaccurate measurements due to phase unwrapping are already possible for velocity rates larger than 20 cm/year. With the semi-automated texture image analysis the rough estimation of the velocity rates over an outlined moving zone is accurate for rates of “cm/day”, “dm/month” and “cm/month”, but due to the decorrelation of yearly TSX interferograms this method fails for the observation of slow movements in the “cm/yr” range

    Kinematics and geomorphological changes of a destabilising rock glacier captured from close-range sensing techniques (Tsarmine rock glacier, Western Swiss Alps)

    Get PDF
    Accurately assessing landform evolution and quantifying rapid environmental changes are gaining importance in the context of monitoring techniques in alpine environments. In the European Alps, glaciers and rock glaciers are among the most characteristic cryospheric components bearing long and systematic monitoring periods. The acceleration in rock glacier velocities and the onset of destabilization processes, mainly since 1990, have raised several concerns due to the potential effects on the high alpine natural and anthropic environments. This study presents a combination of uncrewed aerial vehicle (UAV) and terrestrial laser scanning (TLS) surveys for monitoring the current changes on the quickly accelerating, destabilised Tsarmine rock glacier in the Arolla Valley, Western Swiss Alps, delivering a considerable volume of debris to a steep torrential gully. High-resolution digital elevation models (DEMs) and orthomosaics are derived from UAV image series combined with structure from motion (SfM) photogrammetry techniques. Multitemporal orthomosaics are employed for measuring spatially continuous rock glacier kinematics using image matching algorithms. Superficial displacements are evaluated with simultaneous in-situ differential global navigation satellite system (GNSS) measurements. Elevation and volume changes are computed from TLS and UAV-derived DEMs at similar periods. Between June 2017 and September 2019, both datasets showed a similar elevation change pattern and surface thinning rates of 0.15 ± 0.04 and 0.16 ± 0.03 m yr−1, respectively. Downward of a rupture zone developing about 150 m above the front, the rock glacier doubled its overall velocity during the study period, from around 5 m yr−1 between October 2016 and June 2017 to more than 10 m yr−1 between June and September 2019. The kinematic information reveals striking differences in the velocity between the lower and upper rock glacier sections. The monitoring approach based on close-sensing techniques provides accurate surface velocity and volume change information, allowing an enhanced description of the current rock glacier dynamics and its surface expression
    corecore