12 research outputs found

    Motor kinematic differences in children with autism sepectrum disorder : ecological gameplay with a sensorised toy

    Get PDF
    Background Evidence suggests gross motor differences are present in children with Autism Spectrum Disorder (ASD) from birth. Trevarthen and Delafield-Butt (2013) proposed that one of the early markers of ASD are abnormalities in the development of intentional movements, which are present before the manifestations of symptoms typically associated with autism, like deficiencies in social interaction and communication. A growing body of literature demonstrates kinematic and action patterns differences in children and adults with ASD. However, these experiments typically require expensive laboratory-based optical motion tracking systems. Here, we developed bespoke, sensorised wooden cubes for motor assessment of children’s play and report on the kinematic and action pattern differences of the children with autism compared to children developing typically. Objectives A description of ASD-specific action patterns and kinematics using sensorised toys. Methods Participants. Children 3 to 5 years diagnosed with ASD (n = 15) recruited from the Scottish Centre for Autism, Glasgow, UK. Children 3 to 5 years old developing typically recruited from nurseries in Glasgow, UK. Adults 20 to 25 years old without ASD recruited from Glasgow, UK. The study was approved by the University of Strathclyde Ethics Committee and consent obtained from the parents of children or the adults. In the case of the children with ASD, pre-screening with Vineland-II, AQ-Child and Leiter-R Brief IQ was performed. Procedure. The children were seated at a table and instructed to play two simple games that involved moving the cube from one position to another: a Serially Organized Action (SOA) game and a Single Repetitive Action (SRA) game. The first required complex motor sequencing and engagement with the experimenter, while the second consisted of a simple repetitive movement. Each game produced a single measured movement to a goal with 25 iterations or repetitions to yield 50 movements in total. An electronic board inside the cubes was equipped with tri-axial magnetometer, gyroscope and accelerometer wirelessly transferred the cube’s motion data to a laptop. The signal (raw motion data) was extracted through a Matlab-based platform and analysed. Data Analysis. Kinematic features of movement duration; maximum value of acceleration, velocity, and jerk during each movement; time to maximum value; % duration to maximum value; and the acceleration, velocity, and jerk action patterns profiles were calculated. Results The jerk profile of children with ASD was significantly different, showing increased maximum jerk, reduced time to maximum value and & duration to maximum value, and lower variability than typically developing children. Further, movement duration was shorter compared to age-matched typically developing children, and maximum velocity was significantly higher in children with ASD compared to children developing typically. Conclusion The increased jerk values and onset times in the ASD group are a particularly interesting finding that support new data appearing by other groups. It appeared, especially in the SRA game, that when moving the cube from one position to the next, the children with autism impacted on the surface of the table with greater velocity and typically included the resulting force immediately into to the next movement, giving it a greater jerk value in a shorter span of time that typically children. Typically developing children, on the other hand, paused for a moment (>100 ms) before commencing the next movement. Further, children with autism did not enjoy the SRA game, but they did enjoy the simpler, more repetitive SOA one. The repetitive simplicity of the SOA game and its resulting jerk profile appears to report on a particular behavioural motor feature distinct to ASD, namely stopping an action and starting a new one, while also describing an underlying motor difference that may contribute to it

    Embodied inter subjective engagement in mother-infant tactile communication: a cross-cultural study of Japanese and Scottish mother-infant behaviors during infant pick-up

    Get PDF
    This study examines the early development of cultural differences in a simple, embodied, and intersubjective engagement between mothers putting down, picking up, and carrying their infants between Japan and Scotland. Eleven Japanese and ten Scottish mothers with their 6- and then 9-month-old infants participated. Video and motion analyses were employed to measure motor patterns of the mothers' approach to their infants, as well as their infants' collaborative responses during put-down, pick-up, and carry phases. Japanese and Scottish mothers approached their infants with different styles and their infants responded differently to the short duration of separation during the trial. A greeting-like behavior of the arms and hands was prevalent in the Scottish mothers' approach, but not in the Japanese mothers' approach. Japanese mothers typically kneeled before making the final reach to pick-up their children, giving a closer, apparently gentler final approach of the torso than Scottish mothers, who bent at the waist with larger movements of the torso. Measures of the gap closure between the mothers' hands to their infants' heads revealed variably longer duration and distance gap closures with greater velocity by the Scottish mothers than by the Japanese mothers. Further, the sequence of Japanese mothers' body actions on approach, contact, pick-up, and hold was more coordinated at 6 months than at 9 months. Scottish mothers were generally more variable on approach. Measures of infant participation and expressivity indicate more active participation in the negotiation during the separation and pick-up phases by Scottish infants. Thus, this paper demonstrates a culturally different onset of development of joint attention in pick-up. These differences reflect cultures of everyday interaction

    Rhythmic Relating : Bidirectional support for social timing in autism therapies

    Get PDF
    We propose Rhythmic Relating for autism: a system of supports for friends, therapists, parents, and educators; a system which aims to augment bidirectional communication and complement existing therapeutic approaches. We begin by summarizing the developmental significance of social timing and the social-motor-synchrony challenges observed in early autism. Meta-analyses conclude the early primacy of such challenges, yet cite the lack of focused therapies. We identify core relational parameters in support of social-motor-synchrony and systematize these using the communicative musicality constructs: pulse; quality; and narrative. Rhythmic Relating aims to augment the clarity, contiguity, and pulse-beat of spontaneous behavior by recruiting rhythmic supports (cues, accents, turbulence) and relatable vitality; facilitating the predictive flow and just-ahead-in-time planning needed for good-enough social timing. From here, we describe possibilities for playful therapeutic interaction, small-step co-regulation, and layered sensorimotor integration. Lastly, we include several clinical case examples demonstrating the use of Rhythmic Relating within four different therapeutic approaches (Dance Movement Therapy, Improvisational Music Therapy, Play Therapy, and Musical Interaction Therapy). These clinical case examples are introduced here and several more are included in the Supplementary Material (Examples of Rhythmic Relating in Practice). A suite of pilot intervention studies is proposed to assess the efficacy of combining Rhythmic Relating with different therapeutic approaches in playful work with individuals with autism. Further experimental hypotheses are outlined, designed to clarify the significance of certain key features of the Rhythmic Relating approach

    Kinematic development of infants and their interaction with their mothers during specific tasks

    Get PDF
    Everyday social projects exhibit regular action patterns structured by their motor goals. Shared understanding is developed in infancy in participation in common motor projects by learning anticipations of their motor intention, such as during feeding, being picked up or put down, and in play. Co-operative, participatory games and rituals enacted every day by mothers and babies likely establish distinct, culturally specific motor styles. Generation of non-verbal embodied understanding is dependent on intent participation, and requires co-ordination and contingent timing of actions from both mother and baby. In this study, we examine the action patterns of mothers and their babies from Japan and Scotland during every day games and rituals. Goal-directed movements within these are analysed for their prospective control of action using General Tau Theory, a mathematicopyschophysical theory of prospective perceptual control of movement shown to be universally basic in animal motor control [3] and [4]

    Loss of Gli3 enhances the viability of embryonic telencephalic cells in vitro

    Get PDF
    The transcription factor Gli3 is important for brain and limb development. Mice homozygous for a mutation in Gli3 (Gli3(Xt/Xt)) have severe abnormalities of telencephalic development and previous studies have suggested that aberrant cell death may contribute to the Gli3(Xt/Xt) phenotype. We demonstrate that telencephalic cells from embryonic Gli3(Xt/Xt) embryos survive better and are more resistant to death induced by cytosine arabinoside, a nucleoside analogue that induces death in neuronal progenitors and neurons, than are control counterparts in vitro. Culture medium conditioned by Gli3(Xt/Xt) cells is more effective at enhancing the viability of control telencephalic cells than medium conditioned by control cells, indicating that Gli3(Xt/Xt) cells release a factor or factors which enhance telencephalic cell viability. Gli3(Xt/Xt) cells are also more sensitive to released factors present in conditioned media. These data suggest that Gli3 plays both cell-autonomous and cell-nonautonomous roles in mediating telencephalic cell viability

    Rhythmic Relating: Bidirectional support for social timing in autism therapies

    No full text
    We propose Rhythmic Relating for autism: a system of supports for friends, therapists, parents, and educators; a system which aims to augment bidirectional communication and complement existing therapeutic approaches. We begin by summarizing the developmental significance of social timing and the social-motor-synchrony challenges observed in early autism. Meta-analyses conclude the early primacy of such challenges, yet cite the lack of focused therapies. We identify core relational parameters in support of social-motor-synchrony and systematize these using the communicative musicality constructs: pulse; quality; and narrative. Rhythmic Relating aims to augment the clarity, contiguity, and pulse-beat of spontaneous behavior by recruiting rhythmic supports (cues, accents, turbulence) and relatable vitality; facilitating the predictive flow and just-ahead-in-time planning needed for good-enough social timing. From here, we describe possibilities for playful therapeutic interaction, small-step co-regulation, and layered sensorimotor integration. Lastly, we include several clinical case examples demonstrating the use of Rhythmic Relating within four different therapeutic approaches (Dance Movement Therapy, Improvisational Music Therapy, Play Therapy, and Musical Interaction Therapy). These clinical case examples are introduced here and several more are included in the Supplementary Material (Examples of Rhythmic Relating in Practice). A suite of pilot intervention studies is proposed to assess the efficacy of combining Rhythmic Relating with different therapeutic approaches in playful work with individuals with autism. Further experimental hypotheses are outlined, designed to clarify the significance of certain key features of the Rhythmic Relating approach
    corecore