151 research outputs found

    Towards a better understanding of the respective effects of milk yield and body condition dynamics on reproduction in Holstein dairy cows

    Get PDF
    The overall reproductive performance has decreased over the last decades, involving changes in cyclicity, oestrous behaviour and fertility. High milk yield (MY), low body condition score (BCS) and large body condition (BC) loss have been identified as risk factors. However, these effects are often confounded, as high MY and body lipid reserve mobilization are correlated. The aim of this study was to evaluate the respective effects of MY and BC on post-partum ovarian cyclicity, oestrus and fertility of Holstein cows. This study provides novel information, as MY and BC change were uncoupled in the overall dataset that included 98 lactations and milk progesterone profiles. Cows were assigned to two feeding-level groups: high feed, which achieved high MY and moderate BC loss throughout lactation (8410 kg, −1.17 unit from calving to nadir BCS), and low feed, which limited MY and triggered a large BC loss (5719 kg, −1.54 unit). MY and BC had different effects at different stages of the reproductive process. Cyclicity as well as non-fertilization and early embryo mortality were mainly driven by body lipid reserves, whereas oestrous behaviour and late embryo mortality were related to MY. The results point to possible uncoupling between cyclicity, oestrus and early and late embryo survival allowing compensation along the reproductive process and leading to similar final reproductive performance. In compact calving systems, which require high pregnancy rates within a short period, higher MY strategies appear unsuitable even where BCS is maintained, owing to depressed oestrous behaviour and probably increased late embryo mortality, which delays rebreeding. Similarly, strategies that compromise cyclicity and fertility by excessively low BCS are unsuitabl

    Use of farm grown cereal/protein mixes by lactating dairy cows in a winter diet

    Get PDF
    We compared the use of three farm grown cereal/protein mixes (oat/fava bean, barley/lupin, triticale/pea), that were used to complement lactating dairy cow diets based on hay consisting of alfalfa/orchard grass and perennial grassland. The trial took place in 2007 at the INRA experimental station of Mirecourt, where an organic mixed-crop dairy system is being prototyped. The experiment was carried out in a Latin square with three groups of eight cows (50% Holstein, 50% Montbéliarde). The cows were fed 4 kg/cow/day of one of the three cereal/protein mixes, 8 kg DM/cow/day of alfalfa/orchardgrass hay, and permanent grassland hay ad libitum. The three diets were indicative of the animals’ needs. Diets had no significant effect on milk production (20.3 kg/cow/d) and milk fat content (41.3 g/kg). However, dairy cows fed with the oat/fababean mix had a significantly lower protein content in their milk. This is the result of: (i) a nitrogen surplus in relation to energy, and (ii) a lower starch content compared to the two other diets. Therefore, in organic mixed-crop dairy systems with forages that are rich in nitrogen, the choice to cultivate mixtures of cereal/pulses and the composition of these mixtures must be primarily based on their agronomic interest and not on their zootechnical one since they are not essential to a balanced animal diet

    An individual reproduction model sensitive to milk yield and body condition in Holstein dairy cows

    Get PDF
    To simulate the consequences of management in dairy herds, the use of individual-based herd models is very useful and has become common. Reproduction is a key driver of milk production and herd dynamics, whose influence has been magnified by the decrease in reproductive performance over the last decades. Moreover, feeding management influences milk yield (MY) and body reserves, which in turn influence reproductive performance. Therefore, our objective was to build an up-to-date animal reproduction model sensitive to both MY and body condition score (BCS). A dynamic and stochastic individual reproduction model was built mainly from data of a single recent long-term experiment. This model covers the whole reproductive process and is composed of a succession of discrete stochastic events, mainly calving, ovulations, conception and embryonic loss. Each reproductive step is sensitive to MY or BCS levels or changes. The model takes into account recent evolutions of reproductive performance, particularly concerning calving-to-first ovulation interval, cyclicity (normal cycle length, prevalence of prolonged luteal phase), oestrus expression and pregnancy (conception, early and late embryonic loss). A sensitivity analysis of the model to MY and BCS at calving was performed. The simulated performance was compared with observed data from the database used to build the model and from the bibliography to validate the model. Despite comprising a whole series of reproductive steps, the model made it possible to simulate realistic global reproduction outputs. It was able to well simulate the overall reproductive performance observed in farms in terms of both success rate (recalving rate) and reproduction delays (calving interval). This model has the purpose to be integrated in herd simulation models to usefully test the impact of management strategies on herd reproductive performance, and thus on calving patterns and culling rate

    Multi-year evaluation of stocking rate and animal genotype on milk production per hectare within intensive pasture-based production systems

    Get PDF
    peer-reviewedThe objective of this experiment was to evaluate the effect of stocking rate (SR) and animal genotype (BR) on milk production, body weight (BW), and body condition score (BCS) within intensive pasture-based systems. A total of 533 lactation records, from 246 elite genetic merit dairy cows were available for analysis; 68 Holstein-Friesian (HF) and 71 Jersey × Holstein-Friesian (JxHF) crossbred cows in each of 4 consecutive years (2013–2016, inclusive). Cows from each BR were randomly allocated to 1 of 3 whole-farm comparative SR treatments, low (LSR; 1,200 kg of BW/ha), medium (MSR; 1,400 kg of BW/ha), and high (HSR; 1,600 kg of BW/ha), and remained in the same SR treatments for the duration of the experiment. The effects of SR, BR, and their interaction on milk production/cow and per hectare, BW, BCS, and grazing characteristics were analyzed. Total pasture utilization per hectare consumed in the form of grazed pasture increased linearly as SR increased: least in LSR (10,237 kg of dry matter/ha), intermediate in MSR (11,016 kg of dry matter/ha), and greatest in HSR (11,809 kg of dry matter/ha). Milk and milk solids (MS) yield per hectare was greatest for HSR (15,942 and 1,354 kg, respectively), intermediate for MSR (14,191 and 1,220 kg, respectively), and least for LSR (13,186 and 1,139 kg, respectively) with similar trends evident for fat, protein, and lactose yield/ha. At higher SR (MSR and HSR), MS yield per kg of BW per ha was reduced (0.85 and 0.82 kg of MS/kg of BW, respectively) compared with LSR (0.93 kg of MS/kg of BW/ha). Holstein-Friesian cows achieved fewer grazing days per hectare (−37 d), and produced more milk (+561 kg/ha) but less fat plus protein (−57 kg/ha) compared with JxHF cows; the JxHF cows were lighter. At similar BW per hectare, JxHF cows produced more fat plus protein/ha during the grazing season at low (1,164 vs. 1,113 kg), medium (1,254 vs. 1,185 kg), and high (1,327 vs. 1,380 kg) SR. In addition, JxHF cows produced more fat plus protein per kg of BW/ha (0.90 kg) compared with HF cows (0.84 kg). The results highlight the superior productive efficiency of high genetic potential crossbred dairy cows within intensive pasture-based production systems

    Review: Towards the agroecological management of ruminants, pigs and poultry through the development of sustainable breeding programmes. II. Breeding strategies

    Get PDF
    Agroecology uses ecological processes and local resources rather than chemical inputs to develop productive and resilient livestock and crop production systems. In this context, breeding innovations are necessary to obtain animals that are both productive and adapted to a broad range of local contexts and diversity of systems. Breeding strategies to promote agroecological systems are similar for different animal species. However, current practices differ regarding the breeding of ruminants, pigs and poultry. Ruminant breeding is still an open system where farmers continue to choose their own breeds and strategies. Conversely, pig and poultry breeding is more or less the exclusive domain of international breeding companies which supply farmers with hybrid animals. Innovations in breeding strategies must therefore be adapted to the different species. In developed countries, reorienting current breeding programmes seems to be more effective than developing programmes dedicated to agroecological systems that will struggle to be really effective because of the small size of the populations currently concerned by such systems. Particular attention needs to be paid to determining the respective usefulness of cross-breeding v. straight breeding strategies of well-adapted local breeds. While cross-breeding may offer some immediate benefits in terms of improving certain traits that enable the animals to adapt well to local environmental conditions, it may be difficult to sustain these benefits in the longer term and could also induce an important loss of genetic diversity if the initial pure-bred populations are no longer produced. As well as supporting the value of within-breed diversity, we must preserve between-breed diversity in order to maintain numerous options for adaptation to a variety of production environments and contexts. This may involve specific public policies to maintain and characterize local breeds (in terms of both phenotypes and genotypes), which could be used more effectively if they benefited from the scientific and technical resources currently available for more common breeds. Last but not least, public policies need to enable improved information concerning the genetic resources and breeding tools available for the agroecological management of livestock production systems, and facilitate its assimilation by farmers and farm technicians

    Milk production per cow and per hectare of spring-calving dairy cows grazing swards differing in Lolium perenne L. ploidy and Trifolium repens L. composition

    Get PDF
    peer-reviewedGrazed grass is the cheapest feed available for dairy cows in temperate regions; thus, to maximize profits, dairy farmers must optimize the use of this high-quality feed. Previous research has defined the benefits of including white clover (Trifolium repens L.) in grass swards for milk production, usually at reduced nitrogen usage and stocking rate. The aim of this study was to quantify the responses in milk production of dairy cows grazing tetraploid or diploid perennial ryegrass (Lolium perenne L.; PRG) sown with and without white clover but without reducing stocking rate or nitrogen usage. We compared 4 grazing treatments in this study: tetraploid PRG-only swards, diploid PRG-only swards, tetraploid with white clover swards, and diploid with white clover swards. Thirty cows were assigned to each treatment, and swards were rotationally grazed at a farm-level stocking rate of 2.75 cows/ha and a nitrogen fertilizer rate of 250 kg/ha annually. Sward white clover content was 23.6 and 22.6% for tetraploid with white clover swards and diploid with white clover swards, respectively. Milk production did not differ between the 2 ploidies during this 4-yr study, but cows grazing the PRG-white clover treatments had significantly greater milk yields (+596 kg/cow per year) and milk solid yields (+48 kg/cow per year) compared with cows grazing the PRG-only treatments. The PRG-white clover swards also produced 1,205 kg of DM/ha per year more herbage, which was available for conserving and buffer feeding in spring when these swards were less productive than PRG-only swards. Although white clover is generally combined with reduced nitrogen fertilizer use, this study provides evidence that including white clover in either tetraploid or diploid PRG swards, combined with high levels of nitrogen fertilizer, can effectively increase milk production per cow and per hectar

    The multi-year cumulative effects of alternative stocking rate and grazing management practices on pasture productivity and utilization efficiency

    Get PDF
    peer-reviewedThe production and utilization of increased quantities of high quality pasture is of paramount importance in pasture-based milk production systems. The objective of this study was to evaluate the cumulative effects of alternative integrated grazing strategies, incorporating alternative stocking rate (SR) and grazing severities, on pasture productivity and grazing efficiency over multiple years within farm systems using perennial ryegrass dominant pastures. Three whole-farm SR treatments were compared over 4 complete grazing seasons (2009 to 2012 inclusive): low (2.51 cows/ha; LSR), medium (2.92 cows/ha; MSR), and high (3.28 cows/ha; HSR). Each system had its own farmlet containing 18 paddocks and remained on the same treatment for the duration of the study. Stocking rate had a significant effect on all grazing variables with the exception of soil fertility status and sward density. Increased SR resulted in increased total annual net pasture accumulation, improved sward nutritive value, and increased grazed pasture utilization. Total annual net pasture accumulation was greatest in HSR [15,410 kg of dry matter (DM)/ha], intermediate for MSR (14,992 kg of DM/ha), and least for LSR (14,479 kg of DM/ha) during the 4-yr study period. A linear effect of SR on net pasture accumulation was detected with an increase in net pasture accumulation of 1,164.4 (SE = 432.7) kg of DM/ha for each 1 cow/ha increase in SR. Pregrazing pasture mass and height and postgrazing residual pasture mass and height were greatest for LSR, intermediate for the MSR, and lowest for the HSR. In comparison with the LSR, the imposition of a consistently increased grazing severity coupled with increased whole farm SR in MSR and HSR treatments arrested the decline in sward nutritive value, typically observed during mid-season. Incorporating the individual beneficial effects of SR on pasture accumulation, nutritive value, and utilization efficiency, total proportional energy (unité fourragère lait) utilization per hectare increased significantly with increasing SR (+0.026 and +0.081 for MSR and HSR, respectively). These results quantify the significant effect of grazing management practices on the feed production capability of modern perennial ryegrass pastures for intensive grazing dairy production systems. Furthermore, these results highlight the importance of consistently imposing grazing treatments over multiple years, and within integrated whole farm systems, to accurately assess the longer term effects of alternate grazing management practices on pasture productivity.the Irish Farmers Dairy Lev
    • …
    corecore