317 research outputs found

    Reading and modulating Cortical ß rursts from motor unit spiking activity

    Get PDF
    β Oscillations (13–30 Hz) are ubiquitous in the human motor nervous system. Yet, their origins and roles are unknown. Traditionally, β activity has been treated as a stationary signal. However, recent studies observed that cortical β occurs in “bursting events,” which are transmitted to muscles. This short-lived nature of β events makes it possible to study the main mechanism of β activity found in the muscles in relation to cortical β. Here, we assessed whether muscle β activity mainly results from cortical projections. We ran two experiments in healthy humans of both sexes (N = 15 and N = 13, respectively) to characterize β activity at the cortical and motor unit (MU) levels during isometric contractions of the tibialis anterior muscle. We found that β rhythms observed at the cortical and MU levels are indeed in bursts. These bursts appeared to be time-locked and had comparable average durations (40–80 ms) and rates (approximately three to four bursts per second). To further confirm that cortical and MU β have the same source, we used a novel operant conditioning framework to allow subjects to volitionally modulate MU β. We showed that volitional modulation of β activity at the MU level was possible with minimal subject learning and was paralleled by similar changes in cortical β activity. These results support the hypothesis that MU β mainly results from cortical projections. Moreover, they demonstrate the possibility to decode cortical β activity from MU recordings, with a potential translation to future neural interfaces that use peripheral information to identify and modulate activity in the central nervous system

    I consumi privati in sanità

    Get PDF

    The genome of Leishmania panamensis: insights into genomics of the L. (Viannia) subgenus.

    Get PDF
    Kinetoplastid parasites of the Leishmania genus cause several forms of leishmaniasis. Leishmania species pathogenic to human are separated into two subgenera, Leishmania (Leishmania) and L. (Viannia). Species from the Viannia subgenus cause predominantly cutaneous leishmaniasis in Central and South America, occasionally leading to more severe clinical presentations. Although the genomes of several species of Leishmania have been sequenced to date, only one belongs to this rather different subgenus. Here we explore the unique features of the Viannia subgenus by sequencing and analyzing the genome of L. (Viannia) panamensis. Against a background of conservation in gene content and synteny, we found key differences at the genomic level that may explain the occurrence of molecular processes involving nucleic acid manipulation and differential modification of surface glycoconjugates. These differences may in part explain some phenotypic characteristics of the Viannia parasites, including their increased adaptive capacity and enhanced metastatic ability.Kinetoplastid parasites of the Leishmania genus cause several forms of leishmaniasis. Leishmania species pathogenic to human are separated into two subgenera, Leishmania (Leishmania) and L. (Viannia). Species from the Viannia subgenus cause predominantly cutaneous leishmaniasis in Central and South America, occasionally leading to more severe clinical presentations. Although the genomes of several species of Leishmania have been sequenced to date, only one belongs to this rather different subgenus. Here we explore the unique features of the Viannia subgenus by sequencing and analyzing the genome of L. (Viannia) panamensis. Against a background of conservation in gene content and synteny, we found key differences at the genomic level that may explain the occurrence of molecular processes involving nucleic acid manipulation and differential modification of surface glycoconjugates. These differences may in part explain some phenotypic characteristics of the Viannia parasites, including their increased adaptive capacity and enhanced metastatic ability

    Dipartimenti di Prevenzione durante la pandemia tra le criticità strutturali e l’emergenza

    Get PDF
    I dipartimenti di prevenzione, entità scarsamente integrate finora nelle aziende sanitarie locali di cui fanno parte, sono state coinvolte in prima linea durante le diverse ondate della pandemia. L'obiettivo del contributo è comprendere se e come questa esperienza abbia contribuito a mutare nel breve e nel lungo termine il posizionamento di questi dipartimenti nelle aziende sanitarie lovali

    Radioiodide induces apoptosis in human thyroid tissue in culture.

    Get PDF
    Radioiodide (131I) is routinely used for the treatment of toxic adenoma, Graves' disease, and for ablation of thyroid remnant after thyroidectomy in patients with thyroid cancer. The toxic effects of ionizing radiations on living cells can be mediated by a necrotic and/or apoptotic process. The involvement of apoptosis in radiation-induced cell death in the thyrocytes has been questioned. The knowledge of the mechanisms that underlie the thyrocyte death in response to radiations can help to achieve a successful treatment with the lowest 131I dose. We developed a method to study the effects of 131I in human thyroid tissue in culture, by which we demonstrated that 131I induces thyroid cell apoptosis. Human thyroid tissues of about 1 mm3 were cultured in vitro and cell viability was determined up to 3 weeks by the MTT assay. Radioiodide added to the culture medium was actively taken up by the tissues. The occurrence of apoptosis in the thyrocytes was assessed by measuring the production of a caspase-cleavage fragment of cytokeratin 18 (M30) by an enzyme-linked immunoassay. Neither variation of cell number nor spontaneous apoptosis was revealed after 1 week of culture. 131I added to the culture medium induced a dose-dependent and a time-dependent generation of M30 fragment. The apoptotic process was confirmed by the generation of caspase-3 and PARP cleavage products. These results demonstrate that 131I induces apoptosis in human thyrocytes. Human thyroid tissue cultures may be useful to investigate the cell death pathways induced by 131I

    Prethymic cytoplasmic CD3 negative acute lymphoblastic leukemia or acute undifferentiated leukemia: a case report

    Get PDF
    Acute undiffentiated leukemia (AUL) is an acute leukemia with no more than one membrane marker of any given lineage. Blasts often express HLA-DR, CD34, and/or CD38 and may be positive for terminal deoxynucleotidyl transferase (TdT). The expression of CD34, HLA-DR, and CD38 has been shown in pro-T-ALL, although in this case, blasts should also express CD7 and cyCD3. However, some cases of T-ALL without CD3 in the cytoplasm and all TCR chain genes in germ line configuration are reported, features that fit well with a very early hematopoietic cell. We report a case of acute leukemia CD34+/-HLADR+CD7+CD38+cyCD3- in which a diagnosis of AUL was considered. However the blasts were also positive for CD99 and TCR delta gene rearrangement which was found on molecular studies. Therefore a differential diagnosis between AUL and an early cyCD3 negative T-ALL was debated

    Retinoic Acid Specifically Enhances Embryonic Stem Cell Metastate Marked by Zscan4

    No full text
    Pluripotency confers Embryonic Stem Cells (ESCs) the ability to differentiate in ectoderm, endoderm, and mesoderm derivatives, producing the majority of cell types. Although the majority of ESCs divide without losing pluripotency, it has become evident that ESCs culture consists of multiple cell populations with different degrees of potency that are spontaneously induced in regular ESC culture conditions. Zscan4, a key pluripotency factor, marks ESC subpopulation that is referred to as high-level of pluripotency metastate. Here, we report that in ESC cultures treated with retinoic acid (RA), Zscan4 ESCs metastate is strongly enhanced. In particular, we found that induction of Zscan4 metastate is mediated via RA receptors (RAR-alpha, RAR-beta, and RAR-gamma), and it is dependent on phosphoinositide-3-kinase (PI3K) signaling. Remarkably, Zscan4 metastate induced by RA lacks canonical pluripotency genes Oct3/4 and Nanog but retained both self-renewal and pluripotency capabilities. Finally we demonstrated that the conditional ablation of Zscan4 subpopulation is dispensable for both endoderm and mesoderm but is required for ectoderm lineage. In conclusion, our research provides new insights about the role of RA signaling during ESCs high pluripotency metastate fluctuation
    • …
    corecore