258 research outputs found

    On Fabry P\'erot Etalon based Instruments. I. The Isotropic Case

    Full text link
    Here we assess the spectral and imaging properties of Fabry P\'erot etalons when located in solar magnetographs. We discuss the chosen configuration (collimated or telecentric) for both ideal and real cases. For the real cases, we focus on the effects caused by the polychromatic illumination of the filter by the irregularities in the optical thickness of the etalon and by deviations from the ideal illumination in both setups. We first review the general properties of Fabry P\'erots and we then address the different sources of degradation of the spectral transmission profile. We review and extend the general treatment of defects followed by different authors. We discuss the differences between the point spread functions (PSFs) of the collimated and telecentric configurations for both monochromatic and (real) quasi-monochromatic illumination of the etalon. The PSF corresponding to collimated mounts is shown to have a better performance, although it varies from point to point due to an apodization of the image inherent to this configuration. This is in contrast to the (perfect) telecentric case, where the PSF remains constant but produces artificial velocities and magnetic field signals because of its strong spectral dependence. We find that the unavoidable presence of imperfections in the telecentrism produces a decrease of flux of photons and a shift, a broadening and a loss of symmetrization of both the spectral and PSF profiles over the field of view, thus compromising their advantages over the collimated configuration. We evaluate these effects for different apertures of the incident beam.Comment: 20 pages 22 figures 2 Appendice

    The Solar Internetwork. II. Magnetic Flux Appearance and Disappearance Rates

    Full text link
    Small-scale internetwork magnetic fields are important ingredients of the quiet Sun. In this paper we analyze how they appear and disappear on the solar surface. Using high resolution Hinode magnetograms, we follow the evolution of individual magnetic elements in the interior of two supergranular cells at the disk center. From up to 38 hr of continuous measurements, we show that magnetic flux appears in internetwork regions at a rate of 120±3120\pm3 Mx cm−2^{-2} day−1^{-1} (3.7±0.4×10243.7 \pm 0.4 \times 10^{24} Mx day−1^{-1} over the entire solar surface). Flux disappears from the internetwork at a rate of 125±6125 \pm 6 Mx cm−2^{-2} day−1^{-1} (3.9±0.5×10243.9\pm 0.5 \times 10^{24} Mx day−1^{-1}) through fading of magnetic elements, cancellation between opposite-polarity features, and interactions with network patches, which converts internetwork elements into network features. Most of the flux is lost through fading and interactions with the network, at nearly the same rate of about 50 Mx cm−2^{-2} day−1^{-1}. Our results demonstrate that the sources and sinks of internetwork magnetic flux are well balanced. Using the instantaneous flux appearance and disappearance rates, we successfully reproduce the time evolution of the total unsigned flux in the two supergranular cells.Comment: 8 pages, 6 figures. Accepted in ApJ. An animation of the right panel of Figure 1 is available at http://spg.iaa.es/pub/downloads/gosic/figure1_right_panel.ta

    Evershed clouds as precursors of moving magnetic features around sunspots

    Full text link
    The relation between the Evershed flow and moving magnetic features (MMFs) is studied using high-cadence, simultaneous spectropolarimetric measurements of a sunspot in visible (630.2 nm) and near-infrared (1565 nm) lines. Doppler velocities, magnetograms, and total linear polarization maps are calculated from the observed Stokes profiles. We follow the temporal evolution of two Evershed clouds that move radially outward along the same penumbral filament. Eventually, the clouds cross the visible border of the spot and enter the moat region, where they become MMFs. The flux patch farther from the sunspot has the same polarity of the spot, while the MMF closer to it has opposite polarity and exhibits abnormal circular polarization profiles. Our results provide strong evidence that at least some MMFs are the continuation of the penumbral Evershed flow into the moat. This, in turn, suggests that MMFs are magnetically connected to sunspots.Comment: To appear in ApJ Letters, Vol 649, 2006 September 20 issu

    Applicability of Milne-Eddington inversions to high spatial resolution observations of the quiet Sun

    Full text link
    The physical conditions of the solar photosphere change on very small spatial scales both horizontally and vertically. Such a complexity may pose a serious obstacle to the accurate determination of solar magnetic fields. We examine the applicability of Milne-Eddington (ME) inversions to high spatial resolution observations of the quiet Sun. Our aim is to understand the connection between the ME inferences and the actual stratifications of the atmospheric parameters. We use magnetoconvection simulations of the solar surface to synthesize asymmetric Stokes profiles such as those observed in the quiet Sun. We then invert the profiles with the ME approximation. We perform an empirical analysis of the heights of formation of ME measurements and analyze the uncertainties brought about by the ME approximation. We also investigate the quality of the fits and their relationship with the model stratifications. The atmospheric parameters derived from ME inversions of high-spatial resolution profiles are reasonably accurate and can be used for statistical analyses of solar magnetic fields, even if the fit is not always good. We also show that the ME inferences cannot be assigned to a specific atmospheric layer: different parameters sample different ranges of optical depths, and even the same parameter may trace different layers depending on the physical conditions of the atmosphere. Despite this variability, ME inversions tend to probe deeper layers in granules as compared with intergranular lanes.Comment: Accepted for publication in Astronomy and Astrophysic

    Diagnostics for spectropolarimetry and magnetography

    Full text link
    An assessment on the capabilities of modern spectropolarimeters and magnetographs is in order since most of our astrophysical results rely upon the accuracy of the instrumentation and on the sensitivity of the observables to variations of the sought physical parameters. A contribution to such an assessment will be presented in this talk where emphasis will be made on the use of the so-called response functions to gauge the probing capabilities of spectral lines and on an analytical approach to estimate the uncertainties in the results in terms of instrumental effects. The Imaging Magnetograph eXperiment (IMaX) and the Polarimetric and Helioseismic Imager (PHI) will be used as study cases.Comment: To be published in "Physics of Sun and Star Spots", Proceedings of IAU Symp. 273, D.P. Choudhary & A.C. Cadavid (eds.), Cambridge, UK: Cambridge University Pres
    • …
    corecore