3,952 research outputs found

    An Adaptive Sampling Scheme to Efficiently Train Fully Convolutional Networks for Semantic Segmentation

    Full text link
    Deep convolutional neural networks (CNNs) have shown excellent performance in object recognition tasks and dense classification problems such as semantic segmentation. However, training deep neural networks on large and sparse datasets is still challenging and can require large amounts of computation and memory. In this work, we address the task of performing semantic segmentation on large data sets, such as three-dimensional medical images. We propose an adaptive sampling scheme that uses a-posterior error maps, generated throughout training, to focus sampling on difficult regions, resulting in improved learning. Our contribution is threefold: 1) We give a detailed description of the proposed sampling algorithm to speed up and improve learning performance on large images. We propose a deep dual path CNN that captures information at fine and coarse scales, resulting in a network with a large field of view and high resolution outputs. We show that our method is able to attain new state-of-the-art results on the VISCERAL Anatomy benchmark

    Evershed clouds as precursors of moving magnetic features around sunspots

    Full text link
    The relation between the Evershed flow and moving magnetic features (MMFs) is studied using high-cadence, simultaneous spectropolarimetric measurements of a sunspot in visible (630.2 nm) and near-infrared (1565 nm) lines. Doppler velocities, magnetograms, and total linear polarization maps are calculated from the observed Stokes profiles. We follow the temporal evolution of two Evershed clouds that move radially outward along the same penumbral filament. Eventually, the clouds cross the visible border of the spot and enter the moat region, where they become MMFs. The flux patch farther from the sunspot has the same polarity of the spot, while the MMF closer to it has opposite polarity and exhibits abnormal circular polarization profiles. Our results provide strong evidence that at least some MMFs are the continuation of the penumbral Evershed flow into the moat. This, in turn, suggests that MMFs are magnetically connected to sunspots.Comment: To appear in ApJ Letters, Vol 649, 2006 September 20 issu

    The Solar Internetwork. II. Magnetic Flux Appearance and Disappearance Rates

    Full text link
    Small-scale internetwork magnetic fields are important ingredients of the quiet Sun. In this paper we analyze how they appear and disappear on the solar surface. Using high resolution Hinode magnetograms, we follow the evolution of individual magnetic elements in the interior of two supergranular cells at the disk center. From up to 38 hr of continuous measurements, we show that magnetic flux appears in internetwork regions at a rate of 120±3120\pm3 Mx cm−2^{-2} day−1^{-1} (3.7±0.4×10243.7 \pm 0.4 \times 10^{24} Mx day−1^{-1} over the entire solar surface). Flux disappears from the internetwork at a rate of 125±6125 \pm 6 Mx cm−2^{-2} day−1^{-1} (3.9±0.5×10243.9\pm 0.5 \times 10^{24} Mx day−1^{-1}) through fading of magnetic elements, cancellation between opposite-polarity features, and interactions with network patches, which converts internetwork elements into network features. Most of the flux is lost through fading and interactions with the network, at nearly the same rate of about 50 Mx cm−2^{-2} day−1^{-1}. Our results demonstrate that the sources and sinks of internetwork magnetic flux are well balanced. Using the instantaneous flux appearance and disappearance rates, we successfully reproduce the time evolution of the total unsigned flux in the two supergranular cells.Comment: 8 pages, 6 figures. Accepted in ApJ. An animation of the right panel of Figure 1 is available at http://spg.iaa.es/pub/downloads/gosic/figure1_right_panel.ta

    Quiet Sun magnetic fields from space-borne observations: simulating Hinode's case

    Full text link
    We examine whether or not it is possible to derive the field strength distribution of quiet Sun internetwork regions from very high spatial resolution polarimetric observations in the visible. In particular, we consider the case of the spectropolarimeter attached to the Solar Optical Telescope aboard Hinode. Radiative magneto-convection simulations are used to synthesize the four Stokes profiles of the \ion{Fe}{1} 630.2 nm lines. Once the profiles are degraded to a spatial resolution of 0\farcs32 and added noise, we infer the atmospheric parameters by means of Milne-Eddington inversions. The comparison of the derived values with the real ones indicates that the visible lines yield correct internetwork field strengths and magnetic fluxes, with uncertainties smaller than ∼\sim150 G, when a stray light contamination factor is included in the inversion. Contrary to the results of ground-based observations at 1\arcsec, weak fields are retrieved wherever the field is weak in the simulation.Comment: Accepted for publication in ApJ Letter

    Dynamics of multi-cored magnetic structures in the quiet Sun

    Full text link
    We report on the dynamical interaction of quiet-Sun magnetic fields and granular convection in the solar photosphere as seen by \textsc{Sunrise}. We use high spatial resolution (0\farcs 15--0\farcs 18) and temporal cadence (33 s) spectropolarimetric Imaging Magnetograph eXperiment data, together with simultaneous CN and Ca\,\textsc{ii}\,H filtergrams from \textsc{Sunrise} Filter Imager. We apply the SIR inversion code to the polarimetric data in order to infer the line of sight velocity and vector magnetic field in the photosphere. The analysis reveals bundles of individual flux tubes evolving as a single entity during the entire 23 minute data set. The group shares a common canopy in the upper photospheric layers, while the individual tubes continually intensify, fragment and merge in the same way that chains of bright points in photometric observations have been reported to do. The evolution of the tube cores are driven by the local granular convection flows. They intensify when they are "compressed" by surrounding granules and split when they are "squeezed" between two moving granules. The resulting fragments are usually later regrouped in intergranular lanes by the granular flows. The continual intensification, fragmentation and coalescence of flux results in magnetic field oscillations of the global entity. From the observations we conclude that the magnetic field oscillations first reported by \citet{2011ApJ...730L..37M} correspond to the forcing by granular motions and not to characteristic oscillatory modes of thin flux tubes.Comment: 12 pages, 7 figures. Accepted in ApJ. Animation 1 can be downloaded from: http://spg.iaa.es/download

    A tale of two emergences: Sunrise II observations of emergence sites in a solar active region

    Get PDF
    R. Centeno et. al.©2017 The American Astronomical Society. All rights reserved. In 2013 June, the two scientific instruments on board the second Sunrise mission witnessed, in detail, a small-scale magnetic flux emergence event as part of the birth of an active region. The Imaging Magnetograph Experiment (IMaX) recorded two small (∼5′′\sim 5^{\prime\prime} ) emerging flux patches in the polarized filtergrams of a photospheric Fe i spectral line. Meanwhile, the Sunrise Filter Imager (SuFI) captured the highly dynamic chromospheric response to the magnetic fields pushing their way through the lower solar atmosphere. The serendipitous capture of this event offers a closer look at the inner workings of active region emergence sites. In particular, it reveals in meticulous detail how the rising magnetic fields interact with the granulation as they push through the Sun's surface, dragging photospheric plasma in their upward travel. The plasma that is burdening the rising field slides along the field lines, creating fast downflowing channels at the footpoints. The weight of this material anchors this field to the surface at semi-regular spatial intervals, shaping it in an undulatory fashion. Finally, magnetic reconnection enables the field to release itself from its photospheric anchors, allowing it to continue its voyage up to higher layers. This process releases energy that lights up the arch-filament systems and heats the surrounding chromosphere.The National Center for Atmospheric Research is sponsored by the National Science Foundation.The German contribution to Sunrise and its reflight was funded by the Max Planck Foundation, the Strategic Innovations Fund of the President of the Max Planck Society (MPG), DLR, and private donations by supporting members of the Max Planck Society, which is gratefully acknowledged. The Spanish contribution was funded by the Ministerio de Economía y Competitividad under Projects ESP2013-47349-C6 and ESP2014-56169-C6, partially using European FEDER funds. The HAO contribution was partly funded through NASA grant number NNX13AE95G. This work was partly supported by the BK21 plus program through the National Research Foundation (NRF) funded by the Ministry of Education of Korea.Peer reviewe

    Oscillations on width and intensity of slender Ca II H fibrils from Sunrise/SuFI

    Get PDF
    R. Gafeira et. al.©2017 The American Astronomical Society. All rights reserved. We report the detection of oscillations in slender Ca ii H fibrils (SCFs) from high-resolution observations acquired with the Sunrise balloon-borne solar observatory. The SCFs show obvious oscillations in their intensity, but also their width. The oscillatory behaviors are investigated at several positions along the axes of the SCFs. A large majority of fibrils show signs of oscillations in intensity. Their periods and phase speeds are analyzed using a wavelet analysis. The width and intensity perturbations have overlapping distributions of the wave period. The obtained distributions have median values of the period of 32 ± 17 s and 36 ± 25 s, respectively. We find that the fluctuations of both parameters propagate in the SCFs with speeds of 11−11+49{11}_{-11}^{+49} km s−1 and 15−15+34{15}_{-15}^{+34} km s−1, respectively. Furthermore, the width and intensity oscillations have a strong tendency to be either in anti-phase or, to a smaller extent, in phase. This suggests that the oscillations of both parameters are caused by the same wave mode and that the waves are likely propagating. Taking all the evidence together, the most likely wave mode to explain all measurements and criteria is the fast sausage mode.The German contribution to Sunrise and its reflight was funded by the Max Planck Foundation, the Strategic Innovations Fund of the President of the Max Planck Society (MPG), DLR, and private donations by supporting members of the Max Planck Society, which are gratefully acknowledged. The Spanish contribution was funded by the Ministerio de Economía y Competitividad under Projects ESP2013-47349-C6 and ESP2014-56169-C6, partially using European FEDER funds. The HAO contribution was partly funded through NASA grant No. NNX13AE95G. This work was partly supported by the BK21 plus program through the National Research Foundation (NRF) funded by the Ministry of Education of Korea. S.J. receives support from the Research Council of Norway.Peer reviewe

    Morphological properties of slender Ca II H fibrils observed by Sunrise II

    Get PDF
    R. Gafeira et. al.©2017 The American Astronomical Society. All rights reserved. We use seeing-free high spatial resolution Ca ii H data obtained by the Sunrise observatory to determine properties of slender fibrils in the lower solar chromosphere. In this work we use intensity images taken with the SuFI instrument in the Ca ii H line during the second scientific flight of the Sunrise observatory to identify and track elongated bright structures. After identification, we analyze theses structures to extract their morphological properties. We identify 598 slender Ca ii H fibrils (SCFs) with an average width of around 180 km, length between 500 and 4000 km, average lifetime of ≈400 s, and average curvature of 0.002 arcsec−1. The maximum lifetime of the SCFs within our time series of 57 minutes is ≈2000 s. We discuss similarities and differences of the SCFs with other small-scale, chromospheric structures such as spicules of type I and II, or Ca ii K fibrils.The German contribution to Sunrise and its reflight was funded by the Max Planck Foundation, the Strategic Innovations Fund of the President of the Max Planck Society (MPG), the Deutsche Zentrum für Luft- und Raumfahrt (DLR), and private donations by supporting members of the Max Planck Society, which is gratefully acknowledged. The Spanish contribution was funded by the Ministerio de Economía y Competitividad under Projects ESP2013-47349-C6 and ESP2014-56169-C6, partially using European FEDER funds. The HAO contribution was partly funded through NASA grant number NNX13AE95G. This work was partly supported by the BK21 plus program through the National Research Foundation (NRF) funded by the Ministry of Education of Korea. S.J. receives support from the Research Council of Norway.Peer reviewe
    • …
    corecore