73 research outputs found

    CLIMATE LECTURE 5: The Role of Clouds in Climate

    Get PDF
    David Rind has played a central role in the science of the modeling of climate change. He was the scientific driving force behind the development and evaluation of the first Goddard Institute for Space Studies (GISS) global climate model (GCM), Model II. Model II was one of the three original GCMs whose projections of climate change in response to a doubling of CO2 concentration were the basis for the influential Charney Report that produced the first assessment of global climate sensitivity. David used Model II to pioneer the scientific field of climate dynamics, performing a broad range of investigations of processes controlling individual elements of the general circulation and how they changed over a wide range of past and potential future climates. The defining characteristic of Davids papers is his unique talent for tracking down the myriad links and causal chains among different parts of the nonlinear climate system. Rather than viewing climate using a simple forcing-and-response paradigm, David showed that the global energy, water, and even momentum cycles are coupled via the general circulation and its transports

    Constraining the Models' Response of Tropical Clouds to SST Forcings Using CALIPSO Observations

    Get PDF
    Here we present preliminary results from the analysis of the low cloud cover (LCC) and cloud radiative effect (CRE) interannual changes in response to sea surface temperature (SST) forcings in two GISS climate models, and 12 other climate models. We further classify them as a function of their ability to reproduce the vertical structure of the cloud response to SST change against 10 years of CALIPSO observations: the constrained models, which match the observation constraint, and the unconstrained models. The constrained models replicate the observed interannual LCC change particularly well (LCC(sub con)=-3.49 1.01 %/K vs. LCC(sub obs)=-3.59 0.28 %/K) as opposed to the unconstrained models, which largely underestimate it (LCC(sub unc) = -1.32 1.28 %/K). As a result, the amount of short-wave warming simulated by the constrained models (CRE(sub con)=2.60 1.13 W/m2/K) is in better agreement with the observations (CRE(sub obs)=3.05 0.28 W/m2/K) than the unconstrained models (CRE(sub con)=0.87 2.63 W/m2/K). Depending on the type of low cloud, the observed relationship between cloud/radiation and surface temperature varies. Over the stratocumulus regions, increasing SSTs generate higher cloud top height along with a large decrease of the cloud fraction below as opposed to a slight decrease of the cloud fraction at each level over the trade cumulus regions. Our results suggest that the models must generate sustainable stratocumulus decks and moist processes in the planetary boundary layer to reproduce these observed features. Future work will focus on defining a method to objectively discriminate these cloud types that can be applied consistently in both the observations and the models

    The Cumulus and Stratocumulus CloudSat-CALIPSO Dataset (CASCCAD)

    Get PDF
    Low clouds continue to contribute greatly to the uncertainty in cloud feedback estimates. Depending on whether a region is dominated by cumulus (Cu) or stratocumulus (Sc) clouds, the interannual low-cloud feedback is somewhat different in both spaceborne and large-eddy simulation studies. Therefore, simulating the correct amount and variation of the Cu and Sc cloud distributions could be crucial to predict future cloud feedbacks. Here we document spatial distributions and profiles of Sc and Cu clouds derived from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) and CloudSat measurements. For this purpose, we create a new dataset called the Cumulus And Stratocumulus CloudSat-CALIPSO Dataset (CASCCAD), which identifies Sc, broken Sc, Cu under Sc, Cu with stratiform outflow and Cu. To separate the Cu from Sc, we design an original method based on the cloud height, horizontal extent, vertical variability and horizontal continuity, which is separately applied to both CALIPSO and combined CloudSatCALIPSO observations. First, the choice of parameters used in the discrimination algorithm is investigated and validated in selected Cu, Sc and ScCu transition case studies. Then, the global statistics are compared against those from existing passive- and active-sensor satellite observations. Our results indicate that the cloud optical thickness as used in passive-sensor observations is not a sufficient parameter to discriminate Cu from Sc clouds, in agreement with previous literature. Using clustering-derived datasets shows better results although one cannot completely separate cloud types with such an approach. On the contrary, classifying Cu and Sc clouds and the transition between them based on their geometrical shape and spatial heterogeneity leads to spatial distributions consistent with prior knowledge of these clouds, from ground-based, ship-based and field campaigns. Furthermore, we show that our method improves existing ScCu classifications by using additional information on cloud height and vertical cloud fraction variation. Finally, the CASCCAD datasets provide a basis to evaluate shallow convection and stratocumulus clouds on a global scale in climate models and potentially improve our understanding of low-level cloud feedbacks. The CASCCAD dataset (Cesana, 2019, https://doi.org/10.5281/zenodo.2667637) is available on the Goddard Institute for Space Studies (GISS) website at https://data.giss.nasa.gov/clouds/casccad/ (last access: 5 November 2019) and on the zenodo website at https://zenodo.org/record/2667637 (last access: 5 November 2019)
    corecore