
PROCEEDINGS OF SPIE

SPIEDigitalLibrary.org/conference-proceedings-of-spie

Constraining the models' response of
tropical clouds to SST forcings using
CALIPSO observations

Gregory  Cesana, Anthony D. Del Genio, Andrew
Ackerman

Gregory  Cesana, Anthony D. Del Genio, Andrew  Ackerman, "Constraining
the models' response of tropical clouds to SST forcings using CALIPSO
observations," Proc. SPIE 10782, Remote Sensing and Modeling of the
Atmosphere, Oceans, and Interactions VII, 107820A (23 October 2018); doi:
10.1117/12.2324800

Event: SPIE Asia-Pacific Remote Sensing, 2018, Honolulu, Hawaii, United
States

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 2/11/2019  Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

https://ntrs.nasa.gov/search.jsp?R=20190000951 2019-08-30T10:25:29+00:00Z



Constraining the models’ response of tropical clouds to SST forcings 
using CALIPSO observations 

Gregory Cesana*a,b,c, Anthony D. Del Geniob, Andrew Ackermanb 
aColumbia University, Center for Climate Systems Research, Earth Institute, New York, NY 

bNASA Goddard Institute for Space Studies, New York, NY. 
cColumbia University, Department of Applied Physics and Applied Mathematics, New York, 

NY  

ABSTRACT 

Here we present preliminary results from the analysis of the low cloud cover (LCC) and cloud radiative effect 
(CRE) interannual changes in response to sea surface temperature (SST) forcings in two GISS climate models, and 
12 other climate models. We further classify them as a function of their ability to reproduce the vertical structure of 
the cloud response to SST change against 10 years of CALIPSO observations: “the constrained models, which 
match the observation constraint, and the unconstrained models”. The constrained models replicate the observed 
interannual LCC change particularly well (∆LCCcon=-3.49 ±1.01 %/K vs. ∆LCCobs=-3.59 ±0.28 %/K) as opposed to 
the unconstrained models, which largely underestimate it (∆LCCunc = -1.32 ± 1.28 %/K). As a result, the amount of 
short-wave warming simulated by the constrained models (∆CREcon=2.60 ±1.13 W/m2/K) is in better agreement 
with the observations (∆CREobs=3.05 ±0.28 W/m2/K) than the unconstrained models (∆CREcon=0.87 ±2.63 
W/m2/K). Depending on the type of low cloud, the observed relationship between cloud/radiation and surface 
temperature varies. Over the stratocumulus regions, increasing SSTs generate higher cloud top height along with a 
large decrease of the cloud fraction below as opposed to a slight decrease of the cloud fraction at each level over the 
trade cumulus regions. Our results suggest that the models must generate sustainable stratocumulus decks and moist 
processes in the planetary boundary layer to reproduce these observed features. Future work will focus on defining a 
method to objectively discriminate these cloud types that can be applied consistently in both the observations and 
the models.  

Keywords: Low clouds, CALIPSO, climate models, cloud feedbacks, evaluation 

1. INTRODUCTION

Low-level clouds are ubiquitous in the tropics. Their presence is tied to the sea surface temperature (SST), which 
affects temperature and moisture differences between the surface and the free troposphere1,2. While the underlying 
processes are not fully understood, recent observationally-based studies confirm that low-cloud cover (LCC) and 
SST are negatively correlated3,4,5. 

Therefore, in a warming world, marine boundary layer clouds are expected to dissipate, which will result in more 
incoming solar radiation, reinforcing the surface warming through a positive feedback. However, there is no 
consensus in global climate models (GCMs) on whether the low-level cloud amount will increase or decrease in 
future climate projections6. Moreover, not all models are able to reproduce the observed loss of low-level cloud in 
response to increased surface temperatures in present day climate and the majority continue to underestimate the 
low-level cloud amount7,8. Added together, these problems limit our confidence in future climate projections. 

As a result, recent efforts have been devoted to evaluating climate models against these observations3,5,6,9. This is 
based on the assumption that models must reproduce the LCC-SST relationship in the current climate as a necessary 
but not sufficient condition to have confidence in their ability to simulate a more realistic future climate change in 
regions dominated by low clouds, although there is no guarantee that current climate variability itself is indicative of 
longer term climate changes10. Their results suggest that models that are in better agreement with observations in 
this way are those with a higher climate sensitivity–i.e., warmer surface temperature change in the future. 

Remote Sensing and Modeling of the Atmosphere, Oceans, and Interactions VII, edited by Guosheng Liu
Ziad S. Haddad, Proc. of SPIE Vol. 10782, 107820A · © 2018 SPIE

CCC code: 0277-786X/18/$18 · doi: 10.1117/12.2324800

Proc. of SPIE Vol. 10782  107820A-1
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 2/11/2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 

 

All these studies used passive sensor measurements to study this relationship and evaluate the models, because they 
provide good spatial and temporal coverage along with a long record, which reduces uncertainty in the LCC-SST 
relationship. However, the space-borne passive instruments typically cannot resolve the vertical extent of clouds and 
miss some clouds that are shielded by higher clouds. In comparison, the vertical structure of cloud changes in 
response to surface temperature variations has received far less attention climate models4. Yet, the 2-dimensional 
cloud amount as seen from space (i.e., LCC) may hide compensating errors in cloud amount at different levels and 
does not document the thickness of the cloud. Recent literature has shown the importance of knowing the vertical 
structure of low clouds to better understand how clouds may respond to climate change11,12. Moreover, in addition to 
other information (e.g., horizontal extent), getting the vertical structure of low clouds could also help discriminating 
the cumulus clouds from the stratocumulus clouds, the former typically having higher cloud top13. This emphasizes 
the need for further evaluation of the vertical structure of clouds in the present-day and how it will evolve in a 
warmer climate. Thus, active remote sensing instruments can potentially provide important information about the 
dominant low cloud regimes and their responses to perturbations. In addition to providing detailed information on 
the vertical structure of clouds, the horizontal resolution of the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite 
Observations (CALIPSO14) satellite’s lidar is typically finer than that of space-borne passive instruments (90m 
footprint vs. a few hundred meters to kilometers), allowing a better detection of fractional cover of cumulus, which 
are radiatively dominant in many of the subsiding regions of the tropics. On the other hand, CALIPSO is limited to a 
2-dimensional swath and thus produces a much smaller sample of clouds than passive instruments. Thus, active and 
passive techniques are complementary. 

Here we propose to characterize and evaluate the response of tropical low clouds to SST forcings in two generations 
of the GISS ModelE general circulation model (GCM), with a focus on its vertical structure, using 10 years of 
CALIPSO satellite measurements. To put this into a larger context, we also assess this relationship for a large 
sample of other climate models. Finally, we identify the best models, based on how well they replicate the observed 
vertical structure relationship between tropical low cloud and SST, and compare the cloud cover response to SSTs of 
these models against the others.  

 

2. DATA 
 
2.1 Observations 

 

We use the GCM-oriented CALIPSO Cloud Product (CALIPSO-GOCCP) version 2.915 for the LCC and the cloud 
fraction from 2007 to 2016 over a 2.5˚x2.5˚ grid and for 40 levels with 480 m spacing from 0 to 19.2km. CALIPSO-
GOCCP was developed to facilitate the evaluation of cloud properties in GCMs when combined with a lidar 
simulator16 that uses the same cloud definitions and ensures a consistent comparison between observations and 
simulations. The caveats of this dataset are discussed in Cesana et al.15 and Cesana and Waliser7, e.g., strong 
attenuation by liquid-topped low clouds may generate an underestimation of the cloud fraction underneath, close to 
the surface (0 to 960m), although it does not affect the cloud cover. To avoid daytime noise contamination on the 
lidar signal, we only use nighttime data, however the results using nighttime and daytime data are similar with a 
slightly larger amplitude (10% to 15% larger). 

To derive an uncertainty estimate of the relationship between interannual cloud amount change and SST anomalies, 
we use four different datasets for the SST: ERAI, Extended Reconstructed SST version 5 (ERSSTv517), NOAA 
Optimum Interpolation (OI) SST version 2 (NOAA-OI SSTv2 18) and Centennial in situ Observation-Based 
Estimates – SST version 2 (COBE-SST219). The uncertainty related to clouds is due to the cloud threshold and/or 
the attenuation of the lidar beam. However, this is reproduced in the model via the use of the lidar simulator and 
therefore does not necessitate further investigation here. For radiative fluxes, we use the Clouds and the Earth’s 
Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) edition 4 dataset (CERES-EBAF 4.020) over 
the same time period as CALIPSO-GOCCP. The large-scale circulation comes from the ERA-interim reanalysis21. 
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2.2 Simulations 

 

In this study, we analyze prescribed-SST (Atmospheric Model Intercomparison Project, AMIP) monthly outputs 
from two generations of the GISS Model GCM: the GISS-E222 model that was used for the 5th Coupled Model 
Intercomparison Project (CMIP5), and a developmental version of the GISS-E3 model that will be submitted to 
CMIP6. E3 and E2 differ in many ways that can potentially affect low clouds described in details in a future paper. 
To summarize, the dry turbulence scheme has been replaced by the moist scheme of Bretherton and Park23. The 
Sunqdvist-type diagnostic cloud fraction scheme of E224 is replaced for E3 by a diagnostic scheme that uses a 
triangular probability density function (PDF) to compute cloud fraction and cloud liquid water mixing ratio25 for 
water clouds, and for ice clouds the inversion of that PDF scheme26 to compute cloud fraction. The Sundqvist-type 
prognostic cloud water parameterization used in E224 is replaced in E3 by a two-moment microphysics scheme with 
prognostic precipitation modified from Gettelman and Morrison27. The convective cloud microphysics has been 
updated with field experiment-based observations28. The double plume parameterization of E2 is still used in E3, 
but with increased entrainment and convective rain evaporation and a new parameterization of downdraft cold pools 
29. 

To provide context for the GISS model results, we also analyze AMIP simulations from 12 other CMIP5 models 
(listed in Section 4.1). Except for GISS-E3 (2007-2015), we use the last 18 years of AMIP simulations (1991-2008). 
To ensure a fair evaluation, we compare modeled and observed cloud fields through the use of the lidar simulator30 
although the relationships found in this study are very similar (in terms of sign and shape) when original cloud 
fractions are utilized in GISS-E3. The model outputs are monthly means of the CALIPSO low-level cloud fraction 
and CALIPSO cloud fraction, so-called cllcalipso and clcalipso, respectively.  

 

3. METHOD 
 
3.1 Definition of low cloud regions. 

 

In this work, we focus on the low-level clouds that form over the tropical oceans (between 35˚S and 35˚N) in 
subsidence regimes defined as having a large-scale pressure vertical velocity at 500 hPa (⍵500) greater than 10 
hPa/day. This captures most of the stratocumulus and stratocumulus-to-shallow-cumulus transition regions, which 
are located climatologically within the magenta contour in Fig. 2a-b-d-f. In the literature, some studies use a 0 
hPa/day ⍵500 threshold4,9. Here we chose a more conservative ⍵500 threshold to minimize areas where high cirrus 
clouds are ubiquitous and may mask the detection of underlying low-clouds in the observations.  

 

3.2 Cloud-SST relationship and observational constraint 

 

One goal of our study is to investigate the interannual variation of the vertical cloud fraction (CF) and LCC in 
response to a change in SST in both the observations and the models; and to use the observed relationship to 
evaluate the models. Capturing the mechanisms that govern the change of clouds in response to a surface warming is 
an essential condition - although not the only one - to predict the future climate. Thus, we select the GCMs that 
produce the most realistic change in cloud profile per K of SST warming. We refer to these as “constrained” models, 
in the sense that they are separated from other models in our analysis using an observational constraint; we 
emphasize though that the models have not been changed in response to the observations. We compare the cloud 
fraction and short-wave (SW), long-wave (LW) and net cloud radiation effect (CRE) changes of these models to the 
others, which we refer to as “unconstrained” models. 

To calculate the relationship between SST and cloud amount, we compute the monthly mean of CF and LCC and 
monthly anomalies of SST after having filtered out all grid boxes wherein ⍵500 is lower than 10 hPa/day, referred to 
as CFsub, LCCsub and SSTsub,anom. Those can be seen as dynamically-based means and anomalies, as opposed to 
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spatially-based anomaly/mean studies that focus on particular regions3,5. Hence, the cloud response is dominated by 
the local component rather than the large-scale component (dynamics). It is therefore complementary to uniform 
+4K increase and abrupt 4 times CO2 increase that are also significantly affected by dynamical changes. We then 
linearly regress CFsub and LCCsub against SSTsub,anom to obtain the change (∆) in cloud fraction and low cloud cover 
per K of SST warming ∆ܥ = ௗ஼ௗௌௌ் , where C is either the CF or LCC. Using a centered finite-differencing scheme as 
in Myers and Norris4 instead of a linear regression does not impact the results (not shown). 

 

3.3 Assumptions and caveats 

  

By using this method, we make some assumptions that generate some caveats. For example, we assume that the 
relationship between SST and low cloud amount is time-scale invariant, i.e., the same regardless of the time-scale 
over which anomalies are calculated. This seems to be supported by several previous studies3,31, but we note that any 
such relevance to cloud feedback in the regions we study does not necessarily have broader implications for the 
global equilibrium climate sensitivity32. Moreover, we analyze the effect of the SST on the cloud by assuming that 
the cloud effect on the SST is negligible on a monthly time-scale based on previous studies3,31,33. The relatively short 
period of the time-record is another caveat here. However, the standard deviation (STD) computed using the four 
SST datasets (or the 5-95 % confidence intervals when using a single SST dataset, not shown) is far smaller than the 
multimodel mean STD and bias, as shown in section 4. In addition, using a smaller period of time does not change 
the sign and shape of the results but may change its magnitude (not shown). 

Other environmental factors may cause low cloud changes such as the estimated inversion strength or ⍵500
5,9. When 

these factors are held constant the variation of the cloud amount as a function of the SST becomes a partial 
derivative. Past studies have shown that computing the partial derivative may decrease the magnitude of ∆LCC4,5.  

As stated earlier, our ⍵500 filter aims at stratocumulus and stratocumulus to shallow cumulus transition regions. Such 
a definition of low clouds - while extensively used in the literature - does not permit us to distinguish between the 
two most common low-cloud types, that is to say trade cumulus and stratocumulus, and it also excludes parts of the 
trade cumulus regimes that have been argued to be important to overall cloud feedback (weak convective regimes13). 
As a consequence, our results do not target a specific type of cloud but rather represent the regional-only averaged 
effect of all types of low clouds.  

 

4. RESULTS 
 

4.1 Constraining the vertical response of low-level cloud fraction 

 

Figure 1a shows the averaged cloud fraction profiles over the tropical oceans (35˚S to 35˚N) in subsidence regimes 
(⍵500 > 10 hPa/day). In the low levels (z<3.36 km), both GISS models underestimate the CF. Although GISS-E2’s 
peak (purple line with stars) is slightly larger than E3’s (blue line with stars), the shape of the GISS-E3 profile is in 
better agreement with the observations (two large values at 1.2 km and 1.68 km). In addition, GISS-E3’s CF values 
are in very good agreement with the observations at 2.16 km and above while they are overestimated in GISS-E2, 
suggesting an excess of trade cumulus type of clouds. Most of the other models (9/12) also underestimate the CF, 
making the multi-model mean peak ~43 % smaller than observed (triangle green line, 11.2 %, vs. circled orange 
line, 19.6 %, Fig. 1a). In addition, the models’ behavior is relatively diverse, which highlights the large uncertainty 
around the simulation of low clouds. The observed shape of the cloud fraction profile - a single peak around 1.2 km 
- is not captured by all models. Some simulate a double-peak shape, which is likely the result of the distinct 
contribution of stratocumulus and trade cumulus clouds, the latter having typically smaller CF and higher cloud top 
(usually defined in different parameterizations). Other models show a single peak as in the observations but with a 
far smaller CF. This could be explained by several reasons: a too shallow BL, a simple general lack of low clouds 
for a given thermodynamic state, a strong masking effect by overlying high-clouds or by a larger influence of the 
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convection/shallow convection parameterization over that of the large-scale cloud and turbulence parameterizations 
that determine stratocumulus clouds.  

  

 
Figure 1: Vertical profiles of cloud fraction (a and c, CF in %) and interannual cloud fraction change due to SST 
variations (b and d, ∆CF in %K-1) as observed by CALIPSO-GOCCP observations (orange line with circles), and as 
simulated by the 14 models. The green line in panels (a,b) and the blue and purple lines with triangles in panels (c,d) 
correspond to the multimodel mean of all, the constrained and the unconstrained models, respectively. The dotted line 
denotes the height (3.36 km) used to define the low cloud cover in CALIPSO-GOCCP 

 

In Figure 1b, we show the interannual change in CF per K of SST warming (∆CF = dCF/dSST) based on a linear 
regression method between SST anomalies and CF, as described in Section 3.2. As for the mean cloud profiles, the 
models’ responses are quite diverse, generating a very large variability compared to the observed STD. A group of 
models predict a very small change, which can be either an increase, a decrease or both at different heights. Others 
models simulate a large increase of the CF at the cloud top and a large decrease below, i.e., an upward shift rather 
than a cloud cover change. Finally, the remaining models reproduce the shape of observed change pretty well, that is 
to say a large decrease below 2 km. 

In this study, we assume that i) the physical mechanisms that control the subtropical low cloud response to warmer 
surface temperature remain identical across all time scales and ii) those mechanisms are essential to predict the 
correct subtropical low cloud change in the future, although they may not necessarily be the only ones (e.g., current 
climate variability does not include the radiative effect of increased CO2 on cloud-top turbulence). Additional 
phenomena, e.g., large-scale dynamical feedbacks that differ on interannual and centennial time scales, could also 
mitigate or amplify the change. However, we believe that the present-day interannual change in the cloud fraction 
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(∆CF) is one important test that a model must pass to have confidence in its prediction of future climate. We 
therefore isolate the change of the low cloud cover due to a surface warming as well as the related top-of-
atmosphere radiative impact for the subset of models that best reproduce the observed cloud fraction change - i.e., a 
large CF decrease (< -1 %/K) and no significant CF cloud top increase (< +0.5 %/K). In the remainder of the 
manuscript, we will call this category the “constrained models” (6/14, CanAM4, CES-CAM5, GFDL, GISS-E3, 
HadGEM2A and IPSL5B), represented in blue, and the other models the “unconstrained models” (8/14, BCC, 
CCSM4-CAM4, CNRM, GISS-E2, IPSL5A, MIROC5, MPI and MRI), represented in purple. The two GISS models 
fall into each category: the unconstrained category for GISS-E2 and the constrained category for the newest version, 
GISS-E3. 

Overall, the constrained models simulate a larger cloud amount in the low-levels, in better agreement with 
CALIPSO, than the unconstrained models (Fig. 1c). In addition to underestimating the low-level cloud amount and 
its decrease with respect to a surface warming, some unconstrained models predict low-level cloud top rising, either 
because of a deepening of the boundary-layer or due to an increase of the upper cloud fraction peak (Fig. 1d). This 
may imply an excess of trade cumuli in the present-day climate in the models having a dual-peak cloud fraction in 
the low levels (e.g., CCSM4-CAM4, MIROC, MRI, GISS-E2 and MPI, not shown): one large peak close to the 
surface (stratocumulus type) and another smaller peak above (trade cumulus type).  

 

4.2 Consequences for low cloud cover 

 

In the remainder of the manuscript, we use star shapes in our plots to distinguish the GISS models from the other 
models and emphasize the effect of cloud parameterization changes with respect to interannual LCC and cloud 
radiative effect (CRE) changes in a GCM.  
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Figure 2: Geographic distribution of low cloud cover (LCC, %) for CALIPSO-GOCCP observations (a) and for GISS-
E3 (b), GISS-E2 (d) and the multimodel, constrained and unconstrained models (f-h-j, respectively) along with their 
corresponding bias against CALIPSO-GOCCP observations (c-e-g-i-k, models minus CALIPSO-GOCCP). The blue 
contour denotes the regions wherein the ⍵500 of each dataset (ERAI reanalysis for the observations, Dee et al., 2011) is 
greater than 10h Pa/day. 

 

Based on this observational constraint, we now investigate how well the models simulate the LCC in present-day 
climate and with respect to a surface warming. Figure 2 shows the LCC maps for the observations and for the two 
model categories as well as their bias. Although the LCC global means of GISS models are almost identical 
(LCCE2=28.5 % and LCCE3=28.6 %), their spatial patterns (Fig. 2b-d) are completely different (E2 failing to 
produce any stratocumulus clouds), which results in a very poor correlation factor for E2 (r=0.11, the smallest of all 
14 models) as opposed to a very good one for E3 (r=0.86, the largest of all 14 models). The reader should also bear 
in mind that E3 cloud fraction and cloud cover are slightly underestimated in the present study because the simulator 
is run offline (at daily frequency), which generates lower cloud fractions and cloud covers than the inline version 
(not shown). On the other hand, the constrained models simulate larger LCC global – and tropical - means 
(LCC=30.5 %, r=0.92), closer to the observations (LCC=37 %), and also better reproduce the observed LCC pattern 
than the unconstrained models (LCC=25.7 %, r=0.86) and the multimodel mean (LCC=27.8 %, r=0.90).  
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Quantity 

∆LCC/∆SST 
(%/K)   

∆CRE 
(Wm2/K)   

∆CRE/∆LCC 
(Wm2/%)   

    BCC -2.95 1.91 -0.65 
    CanAM4* -4.51 3.78 -0.84 
    CCSM4 (CAM4) -2.15 0.29 -0.14 
    CESM1-CAM5* -2.88 0.88 -0.30 
    CNRM 0.31 -2.51 -8.03 
    GFDL* -2.33 2.24 -0.96 
    GISS-E2 0.22 -1.77 -7.86 
    GISS-E3* -3.55 2.94 -0.83 
    HadGEM2A* -2.86 1.98 -0.69 
    IPSL5A -0.73 5.36 -7.39 
    IPSL5B* -4.90 3.77 -0.77 
    MIROC5 -0.86 -1.00 1.17 
    MPI* -2.85 2.89 -1.01 
    MRI -1.59 1.78 -1.12 

Multimodel Mean -2.26 (1.59) 1.61 (2.23) -2.10 (3.12) 
Unconstrained -1.32 (1.28) 0.87 (2.63) -3.13 (3.90) 
Constrained -3.51 (1.01) 2.60 (1.13) -0.73 (0.23) 

Obs -3.59 (0.28) 3.05 (0.28) -0.85 (0.02) 
Table 1: CRE, LCC and CRE/LCC changes depending on the cloud regime for the models and the observations in 
subsidence regimes defined as ⍵500 > 10 hPa/day. The constrained models and the observations are represented in bold. 
The star means that the models include moist processes in the PBL (either due to turbulence parametrization, shallow 
convection or both). The numbers into parenthesis correspond to the standard deviation, computed based on four 
different SST datasets in the observations. 

 

We then applied the same method as in Section 3.2 to calculate the interannual change in LCC per K of surface 
warming (Figure 3a and Table 1 first column, ∆LCC/∆SST. Consistent with the cloud fraction profiles, GISS-E3, 
the only model being within the observation uncertainty, predicts a decrease of the LCC in response to a local 1K 
surface warming (-3.55 % K-1), like most models (12/14), as opposed to a small increase for GISS-E2 (0.22 % K-1). 
Like between GISS-E2 and E3, the multimodel spread is significantly large (5.4 % K-1, Table 1), which is about two 
and half times greater than the absolute value of the multimodel mean (-2.25 % K-1, Table 1). However, the 
constrained models simulate a ∆LCC/∆SST slightly smaller than the observation but within the observational 
uncertainty (-3.59 % K-1 +/- 0.28 % K-1) and with a much-reduced spread (-3.49 % K-1 +/- 1.01 % K-1). The 
observed ∆LCC/∆SST is significant as its amplitude is more than three times larger than the LCC annual standard 
deviation in the same dynamical regimes (1 %). 

It is plausible to think that ∆LCC could depend on the initial amount of LCC in a model34. While the difference 
between GISS-E2 and GISS-E3 is not significant, comparing this relationship for multiple versions of the GISS-E3 
model (run along the course of its development) confirms a relationship between ∆LCC and the present-day LCC in 
subsidence regions (Fig. 3b). This relationship holds regardless of whether the simulator is used or not. Except for 
MIROC5, which simulates a present-day LCC almost as large as the observations, the constrained models simulate a 
larger present-day LCC in subsidence regions (consistent with what was found in Fig. 2). When MIROC5 is set 
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aside, the correlation between the LCC and ∆LCC in Fig. 3 becomes more obvious (r = -0.57 vs. r = -0.40 for all 
models). One should note that the present-day LCC could be biased low in some models, due to a too strong 
shielding effect by overlying high-clouds compared to the observations, possibly affecting the relationship between 
the present-day LCC and ∆LCC. In the GISS-E3 model, the simulator does not affect ∆LCC (Fig. 3; compare red 
and black versions of the same symbols), despite its significant impact on the present-day LCC as hypothesized 
before. In addition, the relationship may be different depending on the type of clouds since Fig. 3 does not separate 
trade cumulus from stratocumulus.  

 

 
Figure 3: (a) LCC change per K of SST warming (∆LCC = dLCC/dSST, %K-1, y-axis) as a function of the present day 
LCC (%, x-axis) for the models and the CALIPSO-GOCCP observations (orange circle). The unconstrained and 
constrained models are represented in purple and blue squares, respectively, while the stars denote the two GISS model 
versions, GISS-E2 in the unconstrained category and GISS-E3 development in the constrained category. The triangles 
correspond to the multimodel mean of each category. The solid black line is the linear regression between LCC and 
∆LCC for all models but the outlier. (b) same as (a) for four versions of GISS-E3 run along the GISS-E3 development 
with (black symbols) and without the simulator (red symbols). Note that while the present-day LCC is largely affected 
by the use of the simulator, the ∆LCC is not. 

 

4.3 Consequences for interannual low cloud feedbacks 

 

In this section, we further examine the impact of cloud changes on the radiative budget, using CREs, defined as the 
difference between the all-sky flux minus the clear-sky flux at the TOA. Figure 4 shows the change in the SW, LW, 
and net CREs per K of surface warming referred to as ∆CRE/∆SST (i.e., dCRE/dSST). A positive ∆CRE/∆SST 
indicates a warming effect at the top-of-the-atmosphere due to clouds when the SST increases; conversely, a 
negative ∆CRE/∆SST indicates a cooling effect. This quantity may be used as a proxy to characterize cloud 
feedbacks at the TOA35,36. All observed ∆CRESW/∆SST, ∆CRELW/∆SST and ∆CRENET/∆SST are positive, a feature 
particularly well-captured by GISS-E3, which is in almost perfect agreement with the data for both the SW and LW 
components of the interannual feedback, while GISS-E2 gets the sign of the SW component wrong. Both 
constrained and unconstrained multimodel means (colored triangles) get the correct sign of all three feedbacks 
although the sign and the magnitude of ∆CRENET/∆SST vary significantly among the models, mostly driven by the 
SW component, in agreement with previous studies35,36. Overall, the constrained models perform better than the 
unconstrained models for all three components, in terms of absolute value and variability. In particular, the 
unconstrained models largely underestimate the ∆CRESW/∆SST (0.73 Wm-2K-1, Table 1 second column), compared 
to the observations (3.05 +/- 0.28 Wm-2K-1) whereas the constrained models almost fall within the observed 
uncertainty (2.60 Wm2K-1). 

Because of the optical properties of their spherical droplets, tropical low-level liquid clouds strongly interact with 
solar radiation by reflecting back to space most of the incoming shortwave radiation. As a result, any change in the 
LCC should affect the CRESW at TOA and one should expect a good correlation between the two quantities, which is 
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demonstrated in Fig. 4a, with a correlation factor of -0.94 (excluding the outlier of the calculation). There is no 
particular correlation for the LW component whereas for the NET component, the correlation is also very large (r = -
0.94), driven by the shortwave radiation, confirming its crucial role in determining the cloud feedback spread of 
CMIP models37. Once again, both the magnitude and the variability of the three components is better reproduced by 
the constrained category of models. 

 

 
Figure 4: CRE change per K of SST warming (a; ∆CRE = dCRE/dSST, Wm-2K-1) and the relationship between the 
∆LCC (x-axis, %K-1) and the ∆CRE (y-axis, Wm-2K-1) for the SW (b), the LW (c) and the NET (d) radiation. The solid 
black line represents the linear regression of the models. The blue shading means a cloud cooling effect as opposed to 
red shading for a cloud warming effect. 

 

 

In addition, we analyzed the sensitivity of ∆CRESW to ∆LCC by simply computing the ratio between the two 
quantities (Table 1, third column; as in Klein et al.31). GISS-E2 largely overestimates the magnitude of this ratio (by 
a factor of 10) as do two other models (IPSL-5A and CNRM), which poorly represent the stratocumulus deck. On 
the other hand, GISS-E3 stands among the best models and almost perfectly replicates the observed ratio. Like 
GISS-E2, the unconstrained models largely overestimate the radiative impact of an LCC loss (-3.13 W/m2/%) 
compared to the observations (-0.85 W/m2/%) while the constrained models reproduced the observed relationship 
quite well (-0.74 W/m2/%). The inability of the unconstrained models to simulate a sufficient amount of LCC in the 
present-day climate may generate a lack of outgoing SW radiation at TOA, which is compensated by artificially 
increasing the reflectivity of the clouds during the tuning process in some modeling centers38.  

The constrained models all generate large stratocumulus decks along with a substantial amount of tropical low-
clouds in non-stratocumulus regions., which seems key to simulate the correct global response of low clouds to 
surface warming. This is likely to be due to the fact that they simulate moist processes in the planetary boundary 
layer (PBL) by either the turbulence (e.g., GISS-E3, CESM1-CAM5, GFDL AM3, hadGEM2A, CanAM4), the 
convection (IPSL5B) or both parameterizations (hadGEM2A) at the same time, in addition to having a turbulence 
scheme that allows stratocumuli to form. This becomes more evident when looking at the evolution of individual 
models. For example, implementing a more physically-based “moist” turbulence parametrization (based on some 
aspects of Bretherton and Park23) in the GISS-E3 model changes the sign of ∆LCC/∆SST and ∆CRESW/∆SST and 
brings the model results within the range of uncertainty of the observations (in addition to other changes). Similarly, 
the changes in the IPSL model from the version 5A to 5B significantly improved its simulations of the ∆LCC and 
∆CRESW quantities most likely because its “dry” PBL was turned into a “moist” PBL through the implementation of 
moist shallow convection within the PBL39, which improved their wind profiles and PBL height40 combined to a 
revision of their turbulence scheme, which improved their representation of stratocumulus clouds. However, the 
MPI “moist-PBL” model does not fall into the constrained category. Even though its results are quite close to the 
observations, the clear overestimation of the cloud frequency above 2.16 km (not shown, likely trade cumulus 
clouds) alters its ∆CF and leads to a too strong sensitivity of ∆CREsw to ∆LCC. Conversely, the BCC “dry-PBL” 
model captures ∆LCC and ∆CREsw variations pretty well (within the range of the constrained models) although its 
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∆CF is unrealistic. Therefore, the capacity of the models to replicate the observed response of low-level clouds and 
radiation to warmer surface temperature seems to be tied to whether or not i) they simulate moist processes in the 
PBL and ii) their turbulence scheme sustains stratocumulus clouds. Such results also demonstrate that a simple 2D 
description of the cloud properties is not sufficient to fully understand and predict how cloud may react to surface 
temperature forcings.   

 

5. SUMMARY AND DISCUSSION 
 

In response to interannual surface warming, the marine tropical low cloud cover (LCC) as observed by the active 
sensor from the CALIPSO satellite over a 10-year period significantly decreases (∆LCC/∆SST = -3.59 %/K). This 
reduction of the LCC is larger than that found using results passive sensor satellites (∆LCC = -1 to -2.95 %/K), 
albeit consistent in terms of sign and magnitude3,5. Overall, the ensemble mean of CMIP5 models captures the sign 
and the shape of the observed interannual low-cloud cover change (∆LCC/∆SST) quite well. However, its 
magnitude is underestimated and the model variability is large (∆LCC/∆SST = -2.25 ±1.58 %/K), with some models 
(2/14) even simulating the wrong sign (a gain instead of a loss). When scrutinized as a function of the height, the 
interannual cloud fraction change (∆CF) in the lower levels reveals various behaviors, which depend on the type of 
cloud and its height. We further show that it is possible to separate the model responses to a surface warming using 
CALIPSO observations of the vertical cloud fraction (∆CF/∆SST) as a constraint: we select the GCMs that produce 
the most realistic change in cloud profile per K of SST warming, referred to as “constrained” models. By doing so, 
we find that the “constrained” models simulate a more realistic behavior of low-level cloud fraction and their 
associated interannual radiative feedbacks (∆CRESW/∆SST) together with a smaller variability in response to a 
surface warming. Their averaged ∆LCC/∆SST is within the observed uncertainty while they slightly underestimate 
the ∆CRESW/∆SST. Meanwhile, the “unconstrained” category fails to reproduce the right magnitude of both 
quantities by a factor of 3 to 4. The fact that models that simulate moist processes within the planetary boundary 
layer produce sustainable stratocumulus decks appears crucial to replicate the observed relationship between 
cloud/radiation and surface temperature. 

Future work will focus on defining a method to discriminate stratocumulus from trade cumulus clouds in 
observations. By doing so, we will be able to assess the spatial distributions of these clouds and to evaluate the 
models more precisely. In addition to this, refining the contribution of additional cloud controlling factors may 
advance our understanding of physical processes driving the change of cloud fraction in response to a warmer 
climate. 
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