486 research outputs found

    The decay of unstable k-strings in SU(N) gauge theories at zero and finite temperature

    Full text link
    Sources in higher representations of SU(N) gauge theory at T=0 couple with apparently stable strings with tensions depending on the specific representation rather than on its N-ality. Similarly at the deconfining temperature these sources carry their own representation-dependent critical exponents. It is pointed out that in some instances one can evaluate exactly these exponents by fully exploiting the correspondence between the 2+1 dimensional critical gauge theory and the 2d conformal field theory in the same universality class. The emerging functional form of the Polyakov-line correlators suggests a similar form for Wilson loops in higher representations which helps in understanding the behaviour of unstable strings at T=0. A generalised Wilson loop in which along part of its trajectory a source is converted in a gauge invariant way into higher representations with same N-ality could be used as a tool to estimate the decay scale of the unstable strings.Comment: 18 pages, 4 figures v2: typos correcte

    Topological susceptibility of SU(N) gauge theories at finite temperature

    Get PDF
    We investigate the large-N behavior of the topological susceptibility in four-dimensional SU(N) gauge theories at finite temperature, and in particular across the finite-temperature transition at Tc. For this purpose, we consider the lattice formulation of the SU(N) gauge theories and perform Monte Carlo simulations for N=4,6. The results indicate that the topological susceptibility has a nonvanishing large-N limit for T<Tc, as at T=0, and that the topological properties remain substantially unchanged in the low-temperature phase. On the other hand, above the deconfinement phase transition, the topological susceptibility shows a large suppression. The comparison between the data for N=4 and N=6 hints at a vanishing large-N limit for T>Tc.Comment: 9 pages, 2 figs, a few discussions added, JHEP in pres

    SU(3) vortex-like configurations in the maximal center gauge

    Get PDF
    A new algorithm for fixing the gauge to (direct) maximal center gauge in SU(N) lattice gauge theory is presented. We check how this method works on SU(3) configurations which are vortex-like, and show how these configurations look like when center projected.Comment: LATTICE99(confine)-3p,5 postscript figure

    Study of SU(3) vortex-like configurations with a new maximal center gauge fixing method

    Get PDF
    We present a new way of fixing the gauge to (direct) maximal center gauge in SU(N) Yang-Mills theory and apply this method to SU(3) configurations which are vortex-like. We study the structure of the Z_3 configurations obtained after center-projecting the SU(3) ones.Comment: 11 pages, 2 figures. To appear in PL

    Center vortices on SU(2) lattices

    Get PDF
    We show that gauge invariant definition of thin, thick and hybrid center vortices, defined by Kovacs and Tomboulis on SO(3) x Z(2) configurations, can also be defined in SU(2). We make this connection using the freedom of choosing a particular SU(2) representative of SO(3). We further show that in another representative the Tomboulis \sigma - \eta thin vortices are P (projection) vortices. The projection approximation corresponds to dropping the perimeter factor of a Wilson loop after appropriate gauge fixing. We present results for static quark potentials based on these vortex counters and compare pojection vortex counters with gauge invariant ones on the same configuration.Comment: LaTe

    Numerical computation of the beta function of large N SU(N) gauge theory coupled to an adjoint Dirac fermion

    Full text link
    We use a single site lattice in four dimensions to study the scaling of large N Yang-Mills field coupled to a single massless Dirac fermion in the adjoint representation. We use the location of the strong to weak coupling transition defined through the eigenvalues of the folded Wilson loop operator to set a scale. We do not observe perturbative scaling in the region studied in this paper. Instead, we observe that the scale changes very slowly with the bare coupling. The lowest eigenvalue of the overlap Dirac operator is another scale that shows similar behavior as a function of the lattice coupling. We speculate that this behavior is due to the beta function appoaching close to a zero.Comment: 16 pages, 9 figures, revised version DOES NOT match the published version in Physical Review

    Local coherence and deflation of the low quark modes in lattice QCD

    Get PDF
    The spontaneous breaking of chiral symmetry in QCD is known to be linked to a non-zero density of eigenvalues of the massless Dirac operator near the origin. Numerical studies of two-flavour QCD now suggest that the low quark modes are locally coherent to a certain extent. As a consequence, the modes can be simultaneously deflated, using local projectors, with a total computational effort proportional to the lattice volume (rather than its square). Deflation has potentially many uses in lattice QCD. The technique is here worked out for the case of quark propagator calculations, where large speed-up factors and a flat scaling behaviour with respect to the quark mass are achieved.Comment: Plain TeX, 23 pages, 4 figures included; minor text modifications; version published in JHE

    Magnetic charge superselection in the deconfined phase of Yang-Mills theory

    Full text link
    The vacuum expectation value of an operator carrying magnetic charge is studied numerically for temperatures above the deconfinement temperature in SU(2) and SU(3) gauge theory. By analyzing its finite size behaviour, this is found to be exactly zero in the thermodynamical limit for any T > T_c whenever the magnetic charge of the operator is different from zero. These results show that magnetic charge is superselected in the hot phase of quenched QCD.Comment: 4 pages, 6 figures, revtex

    Color confinement and dual superconductivity in unquenched QCD

    Get PDF
    We report on evidence from lattice simulations that confinement is produced by dual superconductivity of the vacuum in full QCD as in quenched QCD. Preliminary information is obtained on the order of the deconfining phase transition.Comment: 4 pages, to appear in the Proceedings of Quark Matter 02 - The XVI International Conference on Ultrarelativistic Nucleus-Nucleus Collision

    Conformal vs confining scenario in SU(2) with adjoint fermions

    Get PDF
    The masses of the lowest-lying states in the meson and in the gluonic sector of an SU(2) gauge theory with two Dirac flavors in the adjoint representation are measured on the lattice at a fixed value of the lattice coupling ÎČ=4/g02=2.25\beta = 4/g_0^2 = 2.25 for values of the bare fermion mass m0m_0 that span a range between the quenched regime and the massless limit, and for various lattice volumes. Even for light constituent fermions the lightest glueballs are found to be lighter than the lightest mesons. Moreover, the string tension between two static fundamental sources strongly depends on the mass of the dynamical fermions and becomes of the order of the inverse squared lattice linear size before the chiral limit is reached. The implications of these findings for the phase of the theory in the massless limit are discussed and a strategy for discriminating between the (near--)conformal and the confining scenario is outlined.Comment: 5 pages, 4 figures using RevTeX4, Typos corrected, references added. Versions to appear on PR
    • 

    corecore