2,887 research outputs found

    The relationship between volatile content and the eruptive style of basaltic magma: the Etna case

    Get PDF
    Fourier Transform Infrared (FT-IR) spectroscopic analyses of melt inclusions from four explosive eruptions of Etna (Italy) were conducted to determine pre-eruptive dissolved volatile concentrations. The studied eruptions include the 3930 BP subplinian, the 122 B.C. plinian, and the 4 January 1990 and the 23 December 1995 fountain fire eruptions. Preliminary results indicate that H2O varies between 3.13 and 1.02 wt% and CO2 between 1404 and 200 ppm. The most basic products (3930 BP tephra) contain the highest concentrations of CO2 (1404 ppm), whereas fire fountain hawaiitic tephra present the lowest values (< 200 ppm) indicating a continuous degassing process during the differentiation and rising of the magma. Generally, similar behavior has been found for water, characterized by a decreasing content during the differentiation that is mainly found in the 3930 BP eruption, 1990 and 1995 fire fountain products. Considering the relevance of volatile content and behaviour in determining the eruptive style, we made some inferences on the eruptive mechanisms based on the initial high volatile content and the degassing dynamics inside the plumbing system. These two factors suggest the cause of the high explosive activity in this basaltic volcano

    La cenere vulcanica

    Get PDF
    La cenere vulcanica è formata da particelle solide di dimensioni minori di 2 mm che si formano durante l'attività esplosiva di un vulcano. Al microscopio la cenere appare costituita da particelle di magma solidificato (juvenili), frammenti di rocce pre-esistenti e cristalli. La cenere è dura, abrasiva, non si scioglie in acqua ed è composta da silicati, soprattutto di alluminio e magnesio

    Resident training in urology: Bipolar transurethral resection of the prostate - a safe method in learning endoscopic surgical procedure

    Get PDF
    Introduction: Modern medicine uses increasingly innovative techniques that require more and more capabilities for acquisition. In the urological department is increasing the presence of patients with lower urinary tract symptoms (LUTS) and transurethral resection of the prostate (TURP) is the standard of care in their surgical treatment. We report our surgical experience and learning curve of using bipolar plasmakinetic devices in the training of urological residents to benign prostatic hyperplasia (BPH) treatment. Materials and Methods: 80 patients with benign prostatic enlargement due to BPH were enrolled in the study. TURP has been performed by three urological residents and by an expe- rienced urologist. Patients were evaluated before and 6 months after the endoscopic bipolar plasmakinetic resection using the International Prostate Symptom Score (IPSS), maximum uri- nary flow rate (Qmax), postvoid residual urine (PVR) and prostate specific antigen (PSA). Results: Overall 60 procedures were performed, 18 PlasmaKinetic (PK)-TURP procedures were completed by the three residents. In the other 42 cases the procedures were completed by the experienced urologist. In eight cases there was a capsular perforation and the experienced urol- ogist replaced the resident to complete the resection. No complications have been reported in the procedures completed by the senior urologist. All complications caused by the residents were man- aged intraoperatively without changing the course of the procedure. Statistical differences were observed regarding IPSS, quality of life (QoL), and PVR at 6-month follow-up when procedures completed by urological residents were compared to those completed by the senior urologist. Conclusion: Bipolar device represents appropriate tools to acquire endoscopic skills. It is safe and it can be used at the first experience of BPH treatment by a resident who has not previ- ously approached this endoscopic surgical procedure

    Tephra hazard assessment at Mt. Etna (Italy)

    Get PDF
    In this paper we present a probabilistic hazard assessment for tephra fallout at Mt. Etna (Italy) associated with both short- and long-lived eruptions. Eruptive scenarios and eruption source parameters were defined based on the geological record, while an advection–diffusion–sedimentation model was used to capture the variation in wind speed and direction with time after calibration with the field data. Two different types of eruptions were considered in our analysis: eruptions associated with strong short-lived plumes and eruptions associated with weak long-lived plumes. Our probabilistic approach was based on one eruption scenario for both types and on an eruption range scenario for eruptions producing weak long-lived plumes. Due to the prevailing wind direction, the eastern flanks are the most affected by tephra deposition, with the 122 BC Plinian and 2002–2003 eruptions showing the highest impact both on infrastructures and agriculture

    40Ar–39Ar dating of volcanogenic products from the AND-2A core (ANDRILL Southern McMurdo Sound Project, Antarctica): correlations with the Erebus Volcanic Province and implications for the age model of the core

    Get PDF
    The AND-2A drillcore (Antarctic Drilling Program—ANDRILL) was successfully completed in late 2007 on the Antarctic continental margin (Southern McMurdo Sound, Ross Sea) with the aim of tracking ice proximal to shallow marine environmental fluctuations and to document the 20-Ma evolution of the Erebus Volcanic Province. Lava clasts and tephra layers from the AND-2A drillcore were investigated from a petrographic and stratigraphic point of view and analyzed by the 40Ar–39Ar laser technique in order to constrain the age model of the core and to gain information on the style and nature of sediment deposition in the Victoria Land Basin since Early Miocene. Ten out of 17 samples yielded statistically robust 40Ar–39Ar ages, indicating that the AND-2A drillcore recovered ≤230 m of Middle Miocene (∼128–358 m below sea floor, ∼11.5–16.0 Ma) and >780 m of Early Miocene (∼358–1093 m below sea floor, ∼16.0–20.1 Ma). Results also highlight a nearly continuous stratigraphic record from at least 358 m below sea floor down hole, characterized by a mean sedimentation rate of ∼19 cm/ka, possible oscillations of no more than a few hundreds of ka and a break within ∼17.5–18.1 Ma. Comparison with available data from volcanic deposits on land, suggests that volcanic rocks within the AND-2A core were supplied from the south, possibly with source areas closer to the drill site for the upper core levels, and from 358 m below sea floor down hole, with the “proto-Mount Morning” as the main source

    The relationship between volatile content and the eruptive style of basaltic magma: the Etna case

    Get PDF
    Fourier Transform Infrared (FT-IR) spectroscopic analyses of melt inclusions from four explosive eruptions of Etna (Italy) were conducted to determine pre-eruptive dissolved volatile concentrations. The studied eruptions include the 3930 BP subplinian, the 122 B.C. plinian, and the 4 January 1990 and the 23 December 1995 fountain fire eruptions. Preliminary results indicate that H2O varies between 3.13 and 1.02 wt% and CO2 between 1404 and 200 ppm. The most basic products (3930 BP tephra) contain the highest concentrations of CO2 (1404 ppm), whereas fire fountain hawaiitic tephra present the lowest values (< 200 ppm) indicating a continuous degassing process during the differentiation and rising of the magma. Generally, similar behavior has been found for water, characterized by a decreasing content during the differentiation that is mainly found in the 3930 BP eruption, 1990 and 1995 fire fountain products. Considering the relevance of volatile content and behaviour in determining the eruptive style, we made some inferences on the eruptive mechanisms based on the initial high volatile content and the degassing dynamics inside the plumbing system. These two factors suggest the cause of the high explosive activity in this basaltic volcano

    Early Miocene volcanic activity and paleoenvironment conditions recorded in tephra layers of the AND-2A core (southern McMurdo Sound, Antarctica)

    Get PDF
    The ANtarctic geological DRILLing program (ANDRILL) successfully recovered 1138.54 m of core from drillhole, AND-2A, in the Ross Sea sediments (Antarctica). The core is composed of terrigenous claystones, siltstones, sandstones, conglomerates, breccias, and diamictites with abundant volcanic material. In this work we present sedimentological, morphoscopic, petrographic, and geochemical data on pyroclasts recovered from core AND-2A, which provide insights on eruption styles, volcanic sources, and environments of deposition. One pyroclastic fall deposit, 12 resedimented volcaniclastic deposits and 14 volcanogenic sedimentary deposits record a history of intense explosive volcanic activity in southern Victoria Land during the Early Miocene. Tephra were ejected during Subplinian and Plinian eruptions fed by trachytic to rhyolitic magmas and during Strombolian to Hawaiian eruptions fed by basaltic to mugearitic magmas in submarine/subglacial to subaerial environments. The long-lived Mt. Morning eruptive centre, located c. 80 km south of the drillsite, was recognized as the probable volcanic source for these products on the basis of volcanological, geochemical, and age constraints. The study of tephra in the AND-2A core provides important paleoenvironment information by revealing that the deposition of primary and moderately reworked tephra occurred in a proglacial setting under generally open water marine conditions

    Coalescing binary systems of compact objects: Dynamics of angular momenta

    Get PDF
    The end state of a coalescing binary of compact objects depends strongly on the final total mass M and angular momentum J. Since gravitational radiation emission causes a slow evolution of the binary system through quasi-circular orbits down to the innermost stable one, in this paper we examine the corresponding behavior of the ratio J/M^2 which must be less than 1(G/c) or about 0.7(G/c) for the formation of a black hole or a neutron star respectively. The results show cases for which, at the end of the inspiral phase, the conditions for black hole or neutron star formation are not satisfied. The inclusion of spin effects leads us to a study of precession equations valid also for the calculation of gravitational waveforms.Comment: 22 pages, AASTeX and 13 figures in PostScrip

    40Ar--39Ar dating of volcanogenic products from the AND-2A core (ANDRILL Southern McMurdo Sound Project, Antarctica): correlations with the Erebus Volcanic Province and implications for the age model of the core

    Get PDF
    The AND-2A drillcore (Antarctic Drilling Program – ANDRILL) was successfully completed in late 2007 on the Antarctic continental margin (southern McMurdo Sound, Ross Sea) with the aim of tracking ice-proximal to shallow marine environmental fluctuations and to document the 20-Ma evolution of the Erebus Volcanic Province. Lava clasts and tephra layers from the AND-2A drillcore were investigated from a petrographic and stratigraphic point of view and analyzed by the 40Ar–39Ar laser technique in order to constrain the age model of the core and to gain information on the style and nature of sediment deposition in the Victoria Land Basin since Early Miocene. Ten out of 17 samples yielded statistically robust 40Ar–39Ar ages, indicating that the AND-2A drillcore recovered !230 m of Middle Miocene (~128–358 meters below sea floor, ~11.5–16.0 Ma) and >780 m of Early Miocene (~358–1093 48 meters below sea floor, ~16.0–20.1 Ma). Results also highlight a nearly continuous stratigraphic record from at least 358 meters below sea floor down hole, characterized by a mean sedimentation rate of ~19 cm/ka, possible oscillations of no more than a few hundreds of ka and a break within ~17.5–18.1 Ma. Comparison with available data from volcanic deposits on land, suggests that volcanic rocks within the AND-2A core were supplied from the south, possibly with source areas closer to the drill site for the upper core levels, and from 358 meters below sea floor down hole, with the “proto-Mount Morning” as the main source

    A unique 4000 year long geological record of multiple tsunami inundations in the Augusta Bay (eastern Sicily, Italy)

    Get PDF
    We present the geological evidence for a 4000 year long record of multiple tsunami inundations along the coast of the Augusta Bay (eastern Sicily)and discuss its implications. The research was carried out through a multi-theme approach which benefited from an extraordinarily long historical record that we used to guide detailed geomorphologic and geologic surveys, coring campaigns and laboratory analyses. Two sites, named the Augusta Hospital and Priolo Reserve, were selected and investigated in detail along the 25 km-long coastline of Augusta Bay. We found evidence for six (possibly seven) tsunami deposits; three of them may be tentatively associated with the 1693 and 365 AD Ionian Sea historical tsunamis and the ~3600 BP Santorini event. The other three (possibly four) deposits are evidence for unknown paleo-inundations dated at about 650–770 AD, 600–400 BC and 975–800 BC (at Augusta Hospital site), and 800–600 BC (at Priolo Reserve site). We use these ages to extend further back the historical record of tsunamis available for this coastal area. The exceptional number of tsunami deposits found with this study allowed us to derive an average geologic tsunami recurrence interval in the Augusta Bay of about 600 years for the past 4 ka. Conversely, the historical tsunami data for the past millennium suggest an average tsunami recurrence interval of about 250 years. This difference in the average recurrence intervals suggests that only the strongest inundations may leave recognizable geological signatures at the investigated sites (i.e. the evidence for the 1908 and 1169 tsunamis is missing) but also that the geomorphological setting of the site and its erosional/depositional history are critical aspects for the data recording. Thus, an average recurrence interval derived from the geological record should be considered as a minimum figure. The identification and age estimation of tsunami deposits represent a new and independent contribution to tsunami scenarios and modeling for coastal hazard assessment in Civil Protection applications. Furthermore, our study cases provide new elements on tsunami deposit recognition related to exceptionally large events that occurred in the Aegean Sea
    • …
    corecore