Electronic Supplementary Material

⁴⁰Ar-³⁹Ar dating of volcanogenic products from the AND-2A core (ANDRILL Southern McMurdo Sound Project, Antarctica): correlations with the Erebus Volcanic Province and implications for the age model of the core

by

G. Di Vincenzo, L. Bracciali, P. Del Carlo, K. Panter, S. Rocchi

1. Methods

- 2. Features of dated rocks
- 3. Fig. S1
- 4. Fig. S2
- 5. Fig. S3
- 6. Table S1

1. Methods

Sample preparation and ⁴⁰Ar–³⁹Ar data collection were completed at IGG–CNR, Pisa (Italy). Samples selected for ⁴⁰Ar–³⁹Ar dating before processing, that is as received at IGG–CNR laboratory, are shown in Fig. S1. Samples affected by alteration, evident under the optical or electronic microscope, were rejected and not analyzed.

Polished thin sections from each sample were investigated by a light microscope and by scanning electron microscopy (SEM) using a Philips XL30 (using an accelerating voltage of 20 kV, sample current of 10 nA and 0.5 μ m beam diameter) equipped with an energy dispersive system (EDS) at the Dipartimento di Scienze della Terra, Pisa.

After crushing and sieving, groundmasses and feldspars (plagioclase or alkali feldspar) were concentrated from different grain sizes (see Tables S1) using standard separation techniques, and further purified by hand-picking under a stereomicroscope. Groundmass separates were leached in an ultrasonic bath (heated to ~50°C) for 1 h in HCI 3.5 N and 1h in HNO₃ 1N (Koppers et al. 2000). Feldspars were leached at room temperature in an ultrasonic bath for a few minutes. A longer leaching time (20 min) was used for alkali feldspar 8.88–9.02 mbsf, because of the presence of melt inclusions. After leaching, samples were washed in ultraclean water and dried on a hot plate at ~70°C. Splits of a few to several tens of milligrams of feldspars and groundmasses were wrapped in aluminium foil to form discs <9 mm in diameter and a few millimetres thick. Discs were stacked in pancake fashion within a quartz vial 9 mm in diameter. The stack was interspersed with splits of the standard Fish Canyon sanidine (FCs), every 4–6 mm to monitor the vertical neutron flux. J values for each stack position were monitored by analyzing 5 single crystals of FCs (assumed age 28.03 Ma, Jourdan and Renne 2007). Samples were irradiated in three distinct batches, for 5 h (PAV-64), 2 h (PAV-65) and 3 h (PAV-66), in the core of the TRIGA reactor at the University of Pavia (Italy). ⁴⁰Ar-³⁹Ar analyses were carried out using different laser extraction techniques and different laserprobes: (1) laser total fusion analysis of single or multi-grain splits of K-rich alkali feldspar using a CO₂ laser; (2) laser step-heating analysis using either a defocused Nddoped yttrium-aluminium-garnet (Nd:YAG) laser (for groundmasses) or a defocused CO₂ laser (feldspars). After irradiation, splits consisting of one to a few grains of alkali feldspars (a few milligrams for total fusion analyses to a few tens of milligrams for step-heating analysis were used only for sample 8.88-9.02 mbsf) to a few tens of milligrams for plagioclase and groundmasses, were placed in 1.5- to 9-mm diameter holes (depending on the sample mass) of a copper holder and baked overnight. Total fusion analyses on alkali feldspars (including the fluence monitor FCs) were carried out using a continuous wave CO₂ laser defocused to 1 mm spot size. Step-heating analyses of groundmasses were performed using a continuous wave diode-pumped Nd:YAG laser, which was defocused to a 2 mm spot size and slowly rastered (at 0.1 mm s⁻¹) over the grains by a computer-controlled x-y stage to ensure even heating. One plagioclase and one alkali feldspar concentrates were incrementally heated using the CO₂ laser defocused to 3 mm spot size, which was manually rastered over the

grains to ensure even heating. Step-heating analyses were preceded by a total fusion analysis of mg-splits of the same separate in order to estimate a preliminary age then used to calculate the optimal sample weight for the step-heating run.

After cleanup (8–10 min, including 1 min of lasering for total fusion analyses and 15–20 min for step-heating experiments, including 8-9 min of lasering), using two Saes AP10 getters held at 400°C and one C-50 getter held at room temperature, extracted gases were equilibrated by automated valves into a MAP215-50 noble gas mass spectrometer fitted with a Balzers SEV217 secondary electron multiplier. Ar isotope peak intensities were measured ten times for a total of ~25 min. Blanks were analyzed every one to three analyses. Mass discrimination was monitored by analysis of air pipettes. At the time of data collection mean values were: 1.0051±0.0030 (±2SD, n=33) per atomic mass unit (AMU) for PAV-64, 1.0037±0.0016 (±2SD, n=13) AMU for PAV-65, and 1.0038±0.0018 (±2SD, n=22) AMU for PAV-66. Correction factors for interfering isotopes, determined on K- and Ca-rich glasses, $({}^{38}\text{Ar}/{}^{39}\text{Ar})_{\kappa} = 0.0129,$ were: $({}^{40}\text{Ar}/{}^{39}\text{Ar})_{\kappa} = 0.0093,$ $({}^{39}\text{Ar}/{}^{37}\text{Ar})_{Ca} = 0.00075$ and (³⁶Ar/³⁷Ar)_{Ca}=0.00024. Data reduction was performed using the ArArCALC software (Koppers, 2002). Errors are given at 2σ and are quoted as: (1) analytical errors, including in-run statistics and uncertainties in the discrimination factor, interference corrections and procedural blanks; (2) internal errors, also including uncertainties in the J value; (3) full errors, also including uncertainties on the age of the flux monitor and those in the ⁴⁰K decay constants. Data corrected for post-irradiation decay, mass discrimination effects, isotopes derived from interference reactions and blanks are listed in Table S1. Ages listed in Table S1 were calculated using the IUGS recommended constants (Steiger and Jäger 1977). More details on the analytical procedures can be found in Di Vincenzo and Skála (2009). Errorweighted means and least squares fits were calculated using v. 3.00 of the Isoplot/Ex program (Ludwig 2003).

2. Features of dated rocks

Lithostratigraphic Unit 1 (0 – 37.01 mbsf)

Five samples, consisting of vesiculated lava clasts up to a few centimetres in size, were selected from the Lithostratigraphic Unit 1. A comprehensive description of these samples have been reported by Del Carlo et al. (2009) and will be only summarized here. Sample 8.88–9.02 (a fresh phonolite lava, Fig. S2a) is a lava clast that belongs to the first interval of the core recovered as loose samples in composite bags (bagged samples, i.e. the stratigraphic relationships are not recognizable). It is a fresh subangular glomeroporphyritic lava clast of phonolitic composition containing cm-sized anhedral anorthoclase (Fig. S3) phenocrysts with large glass inclusions (up to 0.5 mm), subhedral medium-grained phenocrysts of zoned clinopyroxene and minor olivine, set in an almost opaque glassy vesiculated groundmass. Flattened vesicles and elongated phenocrysts define a flowage texture.

Sample 10.22–10.44 is a variably vesiculated (5–20%) basanitic lava clast (Fig. S2b) characterized by a phenocrystic assemblage of euhedral skeletal olivine up to 4 mm in length and minor clinopyroxene in a brown glassy groundmass with microlites of clinopyroxene, plagioclase and oxides. Vesicles are irregular in shape and the groundmass consists of patches and streaks of a black to almost opaque glass (i.e., tachylite).

Sample 12.23–12.41 is a glomeroporphyritic vesiculated hawaiitic lava clast characterized by phenocrysts of zoned clinopyroxene (pale-green core to purple-brown rim) and minor olivine in a glassy groundmass that includes microlites of plagioclase, clinopyroxene and magnetite (Fig. S2c). The millimeter-sized rounded vesicles are partially filled with secondary calcite.

The hawaiitic lava clast 18.03–18.25 contains rounded vesicles and phenocrysts of zoned clinopyroxene and minor altered olivine in a glassy groundmass that includes microlites of clinopyroxene, plagioclase and oxides (Fig. S2d).

Sample 18.69–18.73 is a vesiculated (20%) lava clast with a subrounded shape. It is tephritic in composition and contains phenocrysts of clinopyroxene and minor bowlingitic olivine (Fig. S2e).

Lithostratigraphic Unit 4 (122.86 – 224.82 mbsf)

Samples 127.50–127.52 and 129.96–129.97 are two clasts from a diamictite, which is the main lithofacies of Lithostratigraphic Unit 4 (Fielding et al. 2008).

Sample 127.50–127.52 is 1 x 2 centimeter-sized subangular lava clast, consisting of a subaphyric trachyte (Fig. S2f) with scattered anorthoclase (Fig. S3) and green pyroxene microphenocrysts set in a trachytic-textured groundmass made of alkali feldspars and magnetite.

Sample 129.96–129.97 is a 1 x 3 centimeter-sized subangular porphyritic (15 vol%) basaltic lava clast with ~1 mm-sized phenocrysts of plagioclase, clinopyroxene and olivine pseudomorphs. The groundmass is made up of plagioclase microlites, altered glass and minor opaque minerals (Fig. S2g).

Lithostratigraphic Unit 7 (339.92 - 436.18 mbsf)

Sample 358.11–358.13 is a purplish to dark-brown, a few centimeters wide lava clast from a diamictite level. Euhedral magnetite phenocrysts and tiny plagioclase microphenocrysts, which define a pilotaxitic texture, are set in a holocrystalline groundmass with plagioclase, clinopyroxene, magnetite and apatite (Fig. S2h).

Lithostratigraphic Unit 8 (436.18 - 607.35)

Sample 440.83-440.86 is a 5 x 4 centimeter-sized, dark-brown to red, vesicular (15–20 vol%), poorly porphyritic (<1%), intermediate lava clast from a mudstone layer, with

microphenocrysts of plagioclase, abundant magnetite and alkali feldspar in a moderately altered holocrystalline groundmass (Fig. S2i).

Sample 564.92–564.93 is a grey, non-vesicular, porphyritic (10-15 vol%) felsic lava clast from a sandy conglomerate, with phenocrysts of alkali feldspar (~10 vol%), aegirinic clinopyroxene and minor magnetite set in a fine-grained holocrystalline groundmass. The groundmass contains plagioclase, alkali feldspar (mainly anorthoclase in composition, Fig. S3), clinopyroxene and magnetite.

Lithostratigraphic Unit 9 (607.35 – 648.74 mbsf)

Sample 640.13–640.16 belongs to a six-centimeter thick normally graded primary pyroclastic deposit within a sandstone interval and consists of grayish fine pumice lapilli to coarse ash. The pumice clasts are aphyric but in rare instances contain phenocrysts of alkali feldspar (mainly anorthoclase in composition, Fig. S3), the latter commonly found as isolated crystal fragments crystals up to ~0.5 mm in size (Fig. S2k). The pumice have very low alkali, magnesium and iron content pointing to a high degree of alteration (Panter et al., 2008). Pumice from the lapilli tuff are set in a fine-grained matrix of volcanic ash of the same chemical composition. Rare siliciclastic fragments (rounded quartz and lithic fragments) are also found. These observations, coupled with the gradational top and the loaded base of the layer, suggest that the deposit formed by direct sinking of a subaerial pyroclastic fallout (Panter et al., 2008).

Lithostratigraphic Unit 10 (648.74 - 778.34 mbsf)

Sample 709.14–709.16 and 709.17–709.19 are two similar ~3.5-cm thick layers made of rounded fine pumice lapilli, concentrated along ripple foresets. Pumice are subaphyric (with rare anorthoclase phenocrysts, Fig. S3) whose variably flattened vesicles are filled with calcite (Fig. S2I). Within the pumice clasts a significant amount of foreign detritus is present. Subangular to angular monomineralic clasts (up to ~0.3 mm in size) are represented by quartz, plagioclase, minor microcline and subordinate biotite and amphibole. The lithic component is dominated by volcanic clasts (orange-brownish, vesiculated sideromelane, minor tachylite and holocrystalline very fine-grained holocrystalline porphyritic lava). On the basis of lithological features, these deposits are interpreted as two pyroclastic fall events that settled through the water column to the seafloor and were then reworked by shallow water, wave-base processes.

Lithostratigraphic Unit 11 (778.34 – 904.66 mbsf)

Sample 831.66–831.68 represents the thickest (~1 cm thick) of three intervals in Lithostratigraphic Unit 11, where pumice clasts are concentrated. This clast-rich layer, in which the main component is represented by up to 4 mm-sized pumice, has gradational top and bottom contacts within a silty sandstone, which indicates a very weak reworking of a

pyroclastic fall deposit. Monomineralic fragments (alkali feldspar, plagioclase and minor quartz) along with lithic (mostly porphyritic volcanic) clasts also occur (Fig. S2m).

Lithostratigraphic Unit 12 (904.66 – 996.69 mbsf)

The analyzed samples from Lithostratigraphic Unit 12 represent two out of the six accumulations ranging from 2 to 10 cm thick (from the 953–964-mbsf interval) of yellow-grey pumices mixed with dark green highly angular clasts dispersed in a muddy fine-grained sandstone. The pumiceous layer of sample 953.28–953.31 (Fig. S2n) is made up of medium-to coarse-grained pumice fragments and also contains single crystals of euhedral anorthoclase (commonly broken) (Fig. S3), subordinate quartz and plagioclase as well as porphyritic pilotaxitic fragments (up to 1–2 mm sized). In sample 953.54–953.56, which is similar in overall composition to the former, pumices are concentrated in a ~1 cm-thick irregular strip and the amount of monomineralic sialic fragments is lower. Pumice are more altered with respect to those of the previous deposits, nevertheless the lack of foreign detritus in the matrix indicates that the pumice accumulations represent nearly primary tephra layers formed by pyroclastic activity.

Lithostratigraphic Unit 14 (1040.28 – 1138.54 mbsf)

The lowermost lithostragraphic unit consists of sandy diamictite and sandstone with dispersed clasts. Sample 1093.00–1093.04 was taken from a 6 cm-thick interval pumice-rich layer that shows sharp, highly angular to crenulated contacts with the surrounding sandstone. It is formed of dense non-vesicular glassy lense-shaped pumice clasts, subangular fresh monomineralic fragments [anorthoclase (Fig. S3), quartz and plagioclase] and felty to pilotaxitic textured volcanic clasts (Fig. S2o). The dark colour of the sample is due to the almost opaque matrix. Individual pumice are altered and replaced similarly to sample 953.54–953.56 and vary in colour from black to dark-green to brown. This layer is mostly matrix-supported, however, there are local areas where lense-shaped pumices are in contact and are imbricated. Foreign detritus is scarce. On the basis of the described features, this deposit represents a pyroclastic event that was very weakly reworked and later intruded by intra-formational sands (e.g., clastic dike-like).

References

Del Carlo P, Panter KS, Bassett K, Bracciali L, Di Vincenzo G, Rocchi S. (2009) Evidence for local volcanic sources in the upper lithostratigraphic unit of ANDRILL AND-2A core (Southern McMurdo Sound, Antarctica) and implications for paleoenvironment and subsidence in the western Victoria Land basin. Global Planet Change. doi: 10.1016/jgloplacha.2009.09.002

- Di Vincenzo G, Skála R (2009) ⁴⁰Ar-³⁹Ar laser dating of tektites from the Cheb Basin (Czech republic): Evidence for coevality with moldavites and influence of the dating standard on the age of the Ries impact. Geochim Cosmochim Acta, 73:493–513
- Fielding CR, Atkins CB, Bassett KN, Browne GH, Dunbar GB, Field BD, Frank TD, Panter KS, Pekar SF, Krissek LA, Passchier S (2008) Sedimentology and stratigraphy of the AND-2A core, ANDRILL Southern McMurdo Sound, Project, Antarctica. In: Harwood DM, Florindo F, Talarico F, Levy RH (eds), Studies from the ANDRILL, Southern McMurdo Sound Project, Antarctica. Terra Antarctica, 15 (in press)
- Jourdan F, Renne PR (2007) Age calibration of the Fish Canyon sanidine ⁴⁰Ar/³⁹Ar dating standard using primary K–Ar standard. Geochim Cosmochim Acta 71:387–402
- Koppers AAP (2002) ArArCALC-software for ⁴⁰Ar/³⁹Ar age calculations. Comp Geosci 28:605-619
- Koppers AAP, Staudigel H, Wijbrans JR (2000) Dating crystalline groundmass separates of altered Cretaceous seamount basalts by the ⁴⁰Ar/³⁹Ar incremental heating technique. Chem Geol 166:139–158
- Ludwig KR (2003) User's manual for Isoplot 3.00, a geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Spec Pub, 4:54 pp
- Panter KS, Talarico F, Bassett K, Del Carlo P, Field B, Frank T, Hoffman S, Kuhn G, Reichelt L, Sandroni S, Tavini M, Bracciali L, Cornamusini G, von Eynatten H, Rocchi R (2008)
 Petrologic and Geochemical Composition of the AND-2A Core, ANDRILL Southern McMurdo Sound Project, Antarctica. In: Harwood DM, Florindo F, Talarico F, Levy RH (eds), Studies from the ANDRILL, Southern McMurdo Sound Project, Antarctica. Terra Antarctica, 15 (in press)
- Steiger RH, Jäger E (1977) Subcommission on Geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth Planet Sci Lett 36:359–362

Fig. S1 Photographs showing samples selected for ⁴⁰Ar-³⁹Ar dating before processing.

Fig. S2 Microphotographs showing the main petrographical features of samples selected for ⁴⁰Ar-³⁹Ar dating from the AND-2A core. a sample 8.88-9.02, phonolite lava clast with phenocrysts of coarsegrained alkali feldspar, medium-grained pale-green clinopyroxene and minor yellowish olivine set in an almost opaque groundmass, plane polarized light (PPL), field of view 5.5 mm. b sample 10.22-10.44, basanite lava clast with a phenocrystic assemblage of euhedral skeletal olivine and minor pale-brown clinopyroxene in a dark brown glassy groundmass, PPL, field of view 6 mm. c sample 12.23-12.41, hawaiite lava clast with glomeroporphyritic clusters of zoned (pale-green core to purple brown rim) clinopyroxene and minor olivine; the rounded vesicle (top-right of image) is partially filled with secondary calcite; PPL, field of view 3 mm. d sample 18.03-18.25, hawaiite lava clast with phenocrysts of zoned clinopyroxene and minor altered olivine in a glassy groundmass, PPL, field of view 3 mm. e sample 18.69-18.73, vesiculated tephrite lava clastcontaining phenocrysts of clinopyroxene and minor bowlingitic olivine; note the piroxene with a glassy core (top-right corner of image), PPL, field of view 5 mm. f sample 127.50-127.52, trachyte lava clast, with scattered alkali feldspar and minor green pyroxene (top-center) microphenocrysts set in a trachytic-textured groundmass made of alkali feldspars and magnetite, crossed polarized light (CPL), field of view 2 mm. g sample 129.96-129.97, basaltic lava clast with phenocrysts of plagioclase, clinopyroxene (top-right) and olivine pseudomorphs (center of

image), PPL, field of view 4 mm, h sample 358,11-358,13, euhedral magnetite phenocrysts and tiny plagioclase microphenocrysts define a pilotaxitic alignment in this basaltic lava clast, CPL, field of view 5.5 mm. i sample 440.83-440.86, vesicular poorly porphyritic intermediate lava clast with microphenocrysts of plagioclase, abundant magnetite and minor alkali feldspar in a moderately altered holocrystalline groundmass, PPL, field of view 3 mm. j sample 564.92-564.93, felsic lava clast with euhedral phenocrysts of alkali feldspar, aegirinic clinopyroxene and minor magnetite, CPL, field of view 5.5 mm. k sample 640.13-640.16, pyroclastic deposit containing angular vesiculated pumices (bottomright of image), rarely with phenocrysts of alkali feldspar, the latter commonly found as isolated crystal fragments crystals (left of image), PPL, field of view 3 mm. I sample 709.17-709.19, coarse-grained pumiceous sandstone with a carbonatic cement found within a pumice- rich layer, note the three subaphyric pumices and the alkali feldspar (right), CPL, field of view 3 mm. m sample 831.66-831.68, pumice- rich layer with subordinate monomineralic feldspars grains, PPL, field of view 3 mm. n sample 953.28-953.31, pumiceous layer containing monomineralic euhedral alkali feldspar grains (e.g. center of image), PPL, field of view 3 mm. o sample 1093.00-1093.04, blocky dense clast, dark due to the almost opaque matrix, with strongly altered pumices, subangular fresh monomineralic felspars and guartz fragments and felty to pylotaxitic textured volcanic clasts, PPL, field of view 6 mm.

Fig. S3 K-feldspar–Albite–Anorthite triangular plot showing the compositions of alkali feldspars analyzed by the 40 Ar– 39 Ar method.

Table S1 ⁴⁰Ar–³⁹Ar data of groundmasses and feldspars from volcanic samples of the AND-2A Core (ANDRILL SMS Project). Argon isotope concentrations are x10⁻¹⁵ moles.

No.	weight (mg)	³⁶ Ar _(atm)	³⁷ Ar _(Ca)	³⁸ Ar _(CI)	³⁹ Ar _(K)	⁴⁰ Ar _(Tot)	Age	±2σ	40 Ar* %	³⁹ Ar _κ %	Ca/K	± 2σ
I.	aser power (W	')					(Ma)					
	# grains											
samp	ole 8.88–9.02,	anorthocla	se grain siz	ze 0.30–0.5	0 mm, irra	diation P	AV–65, J	=0.0001	874±0.0	000010		
Total	fusion data da	ita										
*1	3.5 mg	0.01440	1.000	0.00301	1.769	4.827	0.109	0.045	11.8	6.4	1.067	0.060
*2	8.2 mg	0.05453	3.382	0.01481	6.492	18.51	0.125	0.028	12.9	23.7	0.983	0.055
*3	7.0 mg	0.03000	2.543	0.01881	4.771	10.56	0.120	0.022	16.0	17.4	1.006	0.056
*4	8.3 mg	0.09283	3.278	0.01990	6.222	29.91	0.135	0.025	8.3	22.7	0.994	0.056
Total	gas age						0.125	0.014				
Error	-weighted mea	an age (4 o	f 4 steps),	MSWD=0.5	59		0.124	0.014				
isoch	iron age (³⁶ Ar/ ⁴	⁰ Ar vs. ³⁹ Ar	r/40Ar diagra	am), MSWE	0=0.89		0.107	0.039				
⁴⁰ Ar/ ³	6Ar intercept						301	11				
sam	ble 8.88–9.02.	anorthocla	se arain siz	ze 0.30–0.5	0 mm. 56.	3 ma. irra	adiation F	PAV-65.	J=0.000	1874±0.00	000010	
step-	heating data		9 9 an ei		e, ee.	eg,e						
1	0.3 W	0.32478	0.609	0.00511	1.382	96.28	0.08	0.35	0.3	3.1	0.832	0.048
2	0.5 W	0.02805	0.782	0.00433	1.428	8.831	0.128	0.094	6.1	3.2	1.033	0.059
3	0.8 W	0.02927	2.243	0.01265	4.113	9.293	0.053	0.022	6.9	9.2	1.029	0.058
4	1.3 W	0.02183	2,799	0.01840	5.337	8.298	0.117	0.014	22.1	11.9	0.990	0.056
5	2.0 W	0.04597	4.388	0.04982	8.624	18.87	0.207	0.013	27.9	19.2	0.960	0.054
6	2.8 W	0.02128	2.243	0.02283	4.313	9.095	0.220	0.026	30.7	9.6	0.981	0.055
7	4.1 W	0.00568	1.554	0.00975	2.893	2.979	0.152	0.022	43.3	6.4	1.013	0.058
8	6.6 W	0.00527	4,550	0.00435	8.244	3.857	0.094	0.013	58.4	18.4	1.041	0.058
9	8.0 W	0.01081	4 685	0.00482	8 460	5 047	0 074	0.011	36.2	18.8	1 045	0.058
10	10 W	0.00557	0.05867	bdl	0.09904	1 661	0.05	0.65	0.8	0.2	1 12	0.13
Total	das age	0.00001	0.00001	bui	0.00001	1.001	0 127	0.013	0.0	0.2		0.10
Error	-weighted mea	an age, no	plateau				_	_				
	C											
samp	ole 10.22–10.4	4, groundn	nass, grain	size 0.30-0	0.50 mm, 5	50.4 mg,	irradiatio	n PAV-6	64, J=0.0	004490±0	.000004	0
step-	heating data											
1	0.20 W	0.01617	0.1139	0.04020	0.1515	5.318	2.9	2.8	10.1	0.2	1.42	0.18
2	0.50 W	0.02453	2.167	0.8095	3.489	11.34	0.95	0.15	36.0	5.6	1.172	0.071
*3	0.70 W	0.01130	3.031	1.132	5.214	8.069	0.735	0.080	58.3	8.4	1.097	0.067
*4	0.90 W	0.01139	3.011	1.058	5.116	7.716	0.689	0.085	56.0	8.3	1.110	0.068
*5	1.2 W	0.4278	6.665	1.772	9.128	134.5	0.72	0.19	6.0	14.8	1.378	0.083
*6	1.5 W	0.1180	16.16	3.238	17.60	49.51	0.674	0.050	29.5	28.4	1.73	0.10
7	1.8 W	0.01514	16.74	1.579	9.013	11.08	0.594	0.035	59.2	14.6	3.50	0.21
8	2.5 W	0.01662	32.72	1.165	6.725	9.387	0.539	0.073	47.4	10.9	9.18	0.56
9	5.5 W	0.02198	96.49	0.7726	4.626	9.229	0.48	0.26	29.5	7.5	39.4	2.4
10	15 W	0.00925	45.40	0.1383	0.8167	2.990	0.25	0.77	8.5	1.3	104.9	6.5
Total	gas age						0.662	0.042				
Error	-weighted mea	an age (4 o	ut of 10 ste	eps), MSWI	D=0.59		0.692	0.038		59.9		
isoch	iron age (³⁶ Ar/ ⁴	⁰ Ar vs. ³⁹ Ar	r/40Ar diagra	am), MSWE	D=0.89		0.691	0.047				
⁴⁰ Ar/ ³	⁶ Ar intercept						295.7	5.5				
sam	ole 12.23–12.4	1, groundm	nass, arain	size 0.30–	0.50 mm. 5	52.1 ma.	irradiatio	n Pav-6	64, J=0.0	004524±0	0.00003	9
step-	heating data		, 0		, -	0,						
1	0.20 W	0.03455	0.1329	0.04024	0.1656	10.50	1.4	2.7	2.8	0.8	1.51	0.16
2	0.50 W	0.1205	3.773	0.5334	3.390	40.88	1.27	0.30	12.9	16.0	2.10	0.13
*3	0.70 W	0.03368	5.422	0.4906	3.328	13.13	0.78	0.10	24.2	15.7	3.07	0.19

No.	# grains	$^{36}\text{Ar}_{(atm)}$	$^{37}\text{Ar}_{(\text{Ca})}$	³⁸ Ar _(CI)	³⁹ Ar _(K)	⁴⁰ Ar _(Tot)	Age	±2σ	40 Ar* %	³⁹ Ar _k %	Ca/K	± 2σ
	weight (mg)						(Ma)					
las	ser power (W	()										
*4	0.90 W	0.02401	5.292	0.5356	3.729	10.76	0.801	0.080	33.9	17.6	2.68	0.16
5	1.2 W	0.03069	4.229	0.5670	3.714	11.96	0.634	0.078	24.1	17.6	2.15	0.14
6	1.5 W	0.03297	7.308	0.4157	2.643	11.95	0.68	0.15	18.5	12.5	5.22	0.32
7	1.8 W	0.02577	19.31	0.3731	2.319	9.026	0.50	0.19	15.6	11.0	15.7	1.0
8	2.5 W	0.01595	30.39	0.2187	1.249	5.219	0.33	0.37	9.6	5.9	45.9	2.8
9	5.0 W	0.01256	58.68	0.07965	0.4316	3.834	0.2	1.7	3.2	2.0	257	17
10	15 W	0.01204	69.03	0.02714	0.1709	3.649	0.4	5.7	2.5	0.8	762	69
Total g	jas age						0.758	0.090				
Error-v	weighted mea	an age, no	plateau				0.793	0.062		33.4		
sample	e 18.03–18.2	5, groundm	nass, grain	size 0.30–0	0.50 mm, ⁻	1.6 mg, ir	radiation	PAV-64	1, J=0.00	04551±0.	0000032	
Total fu	usion data										
1	15 W	0.4074	9.471	0.1034	0.6397	133.2	16.1	2.2	9.6	-	27.9	1.8
		• ·		·								
sample	e 18.69–18.7	3, groundm	nass, grain	size 0.30-0	0.50 mm, 2	2.5 mg, ir	radiation	PAV-64	1, J=0.00	04579±0.	0000028	
Iotal fi	usion data	0 5740	0.000	0.0450		100.0	0.5	4.0	10.0		10.01	0.04
1	15 W	0.5748	8.960	0.3159	1.655	189.2	9.5	1.2	10.2	-	10.21	0.64
			foldonou au		05	wadiatian			04500.0			
Sample	e 127.50-127	.52, aikali	ielospar, gi	ain size >0	.25 mm, ii	radiation	PAV-64,	J=0.00	04590±0	.0000028		
1018111		0 00600	0.04620	bdl	1 050	00.76	11 20	0.15	00.0	2.0	0 04 40	0 0070
ا *0	1	0.00000	0.04039		1.952	20.70	11.00	0.15	92.9	3.0	0.0440	0.0070
*0	1	0.02792	0.50067	0.00272	9.131	133.7	11.345	0.049	93.8 09.5	17.7	0.1035	0.0058
ۍ *4	1	0.00353	0.13060	0.00020	5.067 4.065	71.10	11.000	0.009	90.0	9.9 0.5	0.0465	0.0030
~4 ∗⊏	2	0.00240	0.09199	0.00044	4.305	40.00	11.385	0.071	98.8	8.5	0.0398	0.0028
"D *C	3	0.00333	0.13593		3.507	49.99	11.004	0.080	98.0	6.9 5.0	0.0719	0.0049
*7	5	0.00463	0.08801	0.00033	2.731	38.70	11.284	0.096	96.4	5.3	0.0612	0.0040
*0	1	0.01299	0.15140		5.419	78.34	11.350	0.069	95.0	10.5	0.0527	0.0032
8	1	0.02048	0.11700	0.00022	3.807	58.32	11.334	0.096	89.0	7.4	0.0547	0.0039
9 *10	3	0.03539	0.11703	0.00042	3.217	10 50	11.00	0.11	01.1	0.3	0.0000	0.0047
10	7 5	0.00140	0.03769		0.0077	10.50	11.37	0.19	97.7	2.0	0.0544	0.0078
*10	5	0.00328	0.02001	0.00009	0.9377	13.70	11.27	0.20	92.9 00 5	1.0	0.052	0.010
IZ Totol a		0.01629	0.23925	0.00416	9.924	142.0	11.414	0.046	90.5	19.3	0.0455	0.0034
Error	las aye voightod mor	n ogo (11)	of 10 rupo)		65		11.309	0.072				
EII0I-V	$\frac{36}{r^4}$	⁰ Ar vo ³⁹ Ar	1^{40} Ar diagr	, $WOWD=1$.			11 247	0.072				
40 A r /36 /		AIVS. AI	/ Al ulayia	am), wove	/=1.40		207	16				
AI/ F	Ar intercept						307	10				
oomol) 07 plagia	olooo arai	n oi z o 0.20	0.50 mm	24.0 mg	irradiati		64 1-0	0004507		00
sample	e 129.90-128	9.97, piagio	ciase, grai	1 5126 0.30-	-0.50 mm	, 54.0 mg	, maulati	UII FAV-	-04, J=0.	00045971	EU.UUUUU	20
*1		11 19	6 169	0 05007	0 3030	1095	10	115	0.1	0.4	20.2	07
ا *0	0.3 W	0 171	16.60	0.05097	0.3030	420J	16	10	0.1	9.4	30.3 96.6	Z.1 E A
∠ *2	0.5 W	2.171	24.70	0.01193	0.3022	121 1	11 0	10	1.1 6.1	0.9	100.0	5.4 6.0
ن ٭۸	1.3.1/	0.4100	04.19 01 11	0.00190	0.0014	101.1 22.07	11.0	2.0 1 0	0.1 35.0	14.0	78 9	0.9 1 0
4 *⊑	2 0 10/	0.04030	24.14 17 50	0.00713	0.0700	22.07 10.61	11.1	1.2	30.2	14.Z	70.0 71 /	4.9
5 *6	2.0 11	0.04404	00.71	0.00011	0.4040	10.01	10.9	1.0	02.1 21 0	11.4 20.2	11.4 60.0	4.0 2.0
ט *ד	0.0 VV 1 2 \\/	0.12020	21.29 10.77	0.00002	0.0200	49.30 7 0E2	11 20	1.U 0 Q 1	24.9 61 6	20.3 و ه	02.3 67.6	0.9 10
/ *0	4.3 VV	0.01032	12.77	0.00198	0.0002	10.00	10.00	0.01	01.0	0.0		4.Z
Ø Totol ~		0.01470	20.40	0.00150	0.4904	10.00	10.98	0.90 11	00.0	12.1	109.5	0.9
Total g	las aye	n ogo /0 -	f Q otopo)		0		11 40	0.46		100.0		
	weiginted mea	an age (8 0	i o steps), l	1012000=0.6	5		11.43	0.40		100.0		

Table S1	1 Continu	ed
----------	-----------	----

No.	# grains	³⁶ Ar _(atm)	$^{37}Ar_{(Ca)}$	³⁸ Ar _(CI)	³⁹ Ar _(K)	⁴⁰ Ar _(Tot)	Age	±2σ	^{₄₀} Ar* %	³⁹ Ar _κ %	Ca/K	±2σ
	weight (mg)						(Ma)					
la	ser power (W	()										
isochr	ron age (³⁶ Ar/4	⁰Ar vs. ³⁹ Ar	r/40Ar diagra	am), MSWI	D=0.71		11.39	0.49				
⁴⁰ Ar/ ³⁶	Ar intercept						296.0	2.3				
sampl	le 358.11–358	3.13, groun	dmass, gra	in size 0.3	0–0.50 mm	n, 26.0 m	ng, irradia	tion PA	V–66, J=	0.000276	1±0.0000	011
step-h	neating data											
1	0.15 W	0.0425	0.1996	0.00285	0.09441	16.68	21.7	2.5	24.8	0.3	3.99	0.29
2	0.30 W	0.0832	1.864	0.00583	1.610	90.89	20.40	0.18	72.9	5.3	2.19	0.12
3	0.45 W	0.0564	3.460	0.00064	4.745	172.6	16.299	0.089	90.3	15.6	1.376	0.076
^4 ∗⊏	0.55 W	0.0247	2.882	0.00050	4.295	145.6	15.965	0.065	95.0	14.1	1.266	0.069
"5 *0	0.70 W	0.0172	2.895	0.00147	4.508	149.4	15.877	0.081	96.6	14.8	1.212	0.066
"b *7	0.85 W	0.0139	2.193	0.00214	3.617	120.2	15.921	0.062	96.5	11.9	1.144	0.063
	1.0 W	0.0122	1.721	0.00084	2.589	80.23	15.830	0.091	95.8	8.5 7 F	1.200	0.069
8	1.2 VV	0.0158	1.838	0.00257	2.277	/0./1	15.091	0.090	93.9	7.5	1.523	0.083
10	1.5 W	0.0203	4.071	0.00515	3.373	71 50	15.001	0.062	92.0	74	2.01	0.14
10	2.0 W	0.0107	2 550	0.00524	2.150	10.70	15.23	0.11	92.3	1.1	9.09	0.55
10	5.0 W	0.0040	1 054	0.00045	0.3717	12.73 E 01E	14.06	0.30	09.2 70.2	1.2	10.02	1.99
12		0.0043	1.004		0.1035	01 04	14.00	0.93	70.3 00.0	0.5	21.4 15.44	1.3
Total		0.0079	4.921	0.00270	0.0012	21.04	16.08	0.20	09.0	2.0	15.44	0.85
Frror-	yas aye weighted mea	an ana (A o	ut of 13 ste	ne) MSW	D-0 03		15.00	0.14		101		
isochr	ron age (³⁶ Ar/ ⁴	¹⁰ Ar vs ³⁹ Ar	r/ ⁴⁰ Ar diagra	am) MSWI	D=2.20 D=1.81		15.51	0.32		-10.7		
⁴⁰ Ar/ ³⁶	Ar intercept	/ / /0. / /	/ / li alagit	, wow	5-1.01		373	130				
							0,0	100				
sampl	le 440.83–440	0.86, feldsp	ars, grain s	size >0.18	mm, irradia	ation PAV	′–66, J=0	.00027	62±0.000	0011		
Total f	fusion data	<i>,</i> 1	/0		,		,					
1	1	0.02868	bdl	0.00188	0.8441	935.8	478.1	2.4	99.1	40.3	_	
2	1	0.01993	0.00290	0.00009	0.6835	299.9	202.6	1.8	98.0	32.6	0.008	0.012
*3	1	0.00103	0.00283	0.00020	0.2565	8.701	16.23	0.77	96.5	12.2	0.021	0.034
*4	1	0.00115	0.01055	0.00026	0.2994	10.36	16.60	0.35	96.7	14.3	0.066	0.020
5	1	0.00991	0.04717	0.00008	0.01196	25.48	756	36	88.5	0.6	7.44	0.77
Total g	gas age						277.7	2.7				
Error-	weighted mea	an age (2 o	ut of 5 runs	s), MSWD=	0.74		16.54	0.34				
sampl	le 564.92–564	4.93, alkali	feldspar, g	rain size >().25 mm, ir	radiation	PAV-66,	J=0.00	02764±0	.0000022		
Total f	fusion data											
*1	1	0.00247	0.03379	0.00024	1.172	41.24	17.15	0.13	98.2	5.6	0.0544	0.0048
*2	1	0.00106	0.00073	0.00011	0.3329	11.81	17.14	0.28	97.3	1.6	0.004	0.018
*3	3	0.00435	0.03915	80000.0	2.150	75.58	17.150	0.071	98.3	10.3	0.0344	0.0036
*4	1	0.00364	0.11080	bdl	1.815	63.64	17.104	0.113	98.3	8.7	0.1152	0.0080
*5	1	0.00252	0.04470	bdl	1.335	46.97	17.19	0.13	98.4	6.4	0.0632	0.0071
*6	1	0.00091	0.01017	bdl	0.6609	22.79	16.91	0.20	98.8	3.2	0.0290	0.0096
^/ *0	3	0.00256	0.01238	0.00036	1.339	47.17	17.20	0.13	98.4	6.4	0.0174	0.0051
^8 *0	3	0.00238	0.01133	DCI	1.021	35.76	17.04	0.14	98.0	4.9	0.0209	0.0062
^9 **0	1	0.00368	0.01569		0.8246	29.48	17.09	0.14	96.3	3.9	0.0359	0.0065
*10	3	0.003/1	0.01851	0.00058	1.438	50.53	17.056	0.098	97.8	ю.9 ог	0.0243	0.0049
11 *10	5 F	0.00424	0.03978	0.00030	1.770	02.01 71.05	17.145	0.092	90.U	0.0 0.0	0.0423	0.0044
1∠ *10	ວ 1	0.00340	0.02000	bdi	2.000	71.90	17.113	0.091	90.0 06 0	9.0 0 0	0.0244	0.0040
נו ≮1⊿	ן כ	0.00213	0.01323	bdi	1 445	20.09	17 090	0.24 0.005	90.9 96.3	2.0 6 0	0.043	0.012
14	0	0.00007	0.02102	Dui	1.440	51.04	17.009	0.090	30.3	0.3	0.0201	0.0043

No.	# grains weight (mg)	³⁶ Ar _(atm)	³⁷ Ar _(Ca)	³⁸ Ar _(CI)	$^{39}\text{Ar}_{(\text{K})}$	${}^{\rm 40}{\rm Ar}_{\rm (Tot)}$	Age (Ma)	±2 σ	⁴⁰ Ar* %	³⁹ Ar _k %	Ca/K	±2 σ
la	ser power (N	/)					()					
*15	3	0.00301	0.02043	0.00020	1.188	41.59	16.999	0.083	97.8	5.7	0.0324	0.0056
*16	3	0.00354	0.02802	bdl	1.789	62.50	17.054	0.085	98.3	8.5	0.0296	0.0034
Total g	gas age						17.11	0.14				
Error-	weighted mea	an age (16	of 16 runs)	, MSWD=1	.37		17.10	0.14				
isochi	on age (³⁶ Ar/	⁴⁰ Ar vs. ³⁹ Ar	^{/40} Ar diagra	am), MSWE	D=1.42		17.07	0.17				
⁴⁰ Ar/ ³⁶	Ar intercept						324	86				
samp	le 640.13–64	0.16, alkali	feldspar, gr	rain size >0).18 mm, ir	radiation	PAV-64,	J=0.00	04603±0	.0000028		
10tai 1	1 usion uala	0 00070	0 00200	bdl	0 3403	7 408	17 / 2	0 72	96.8	1 /	0.017	0.035
י אס	1	0.00079	0.00299		1 1 1 1	20.79	17.42	0.72	90.0	6.0	0.017	0.000
ے *2	4	0.00099	0.00207	0.00075	1.440	30.70	17.40	0.19	99.0	6.7	0.0033	0.0041
ۍ *۸	5 4	0.00225	0.01232	0.00017 bdl	1 /2/	21 76	17.55	0.10	90.0	5.0	0.0144	0.0057
4 *5	4	0.00000	0.02301		1 202	20.70	17.44	0.17	95.5	5.9	0.0313	0.0002
*6	5	0.00355	0.00239	0.00095 bdl	2 290	20.93	17.09	0.25	90.4 07.2	0.4	0.0038	0.0040
*7	10	0.00403	0.01170	bdi	2.309	70.53	17.40	0.13	97.5	9.9 13.7	0.0093	0.0030
، *8	5	0.00074	0.04030		1.053	22 57	17.001	0.052	08.2	10.7	0.0202	0.0020
*q	7	0.00101	0.00402	0.00010	1.000	32 49	17.41	0.24	98.0	6.3	0.0000	0.0001
*10	5	0.00217	0.02000	0.00071	1.883	40.26	17.39	0.17	98.4	7.8	0.0004	0.0050
*11	5	0.01272	0.00200	0.00056	1 182	29.33	17.87	0.30	87.2	49	0.0212	0.0083
*12	5	0.00238	0.01020	0.00047	1 114	24.02	17.30	0.00	97.0	4.6	0.0212	0.0082
*13	5	0.00101	0.00823	0.00027	1 226	26.13	17.00	0.14	98.8	51	0.0127	0.0086
*14	1	0.00120	0.02422	0.00014	0.3461	7.676	17.48	0.67	95.3	1.4	0.132	0.041
*15	6	0.00030	0.01784	0.00074	1.607	33.81	17.34	0.14	99.7	6.7	0.021	0.010
*16	4	0.00150	0.01011	0.00008	0.9866	20.97	17.20	0.26	97.8	4.1	0.019	0.025
*17	7	0.00150	0.01610	bdl	1.385	29.52	17.35	0.16	98.5	5.7	0.022	0.011
Total	aas ade						17.41	0.11				
Error-	weighted mea	an age (17	of 17 runs)	, MSWD=1	.39		17.39	0.11				
isochi	on age (³⁶ Ar/	⁴⁰ Ar vs. ³⁹ Ar	/ ⁴⁰ Ar diagra	am), MSWE	D=0.49		17.30	0.12				
⁴⁰ Ar/ ³⁶	Ar intercept		0				360	40				
samp	le 709.14–709	9.16, alkali	feldspar/pla	agiocalse, g	grain size :	>0.18 mn	n, irradiat	ion PAV	–64, J=0	.0004614	±0.00000)28
Iotal	usion data	0 000 40	0.00004	0.00000	0 4 4 0 4	04.00	10.01	0 77	40.0	44.0	0.440	0.007
"1 *0	1	0.03840	0.02621	0.00029	0.4404	21.03	18.21	0.77	46.0	11.8	0.112	0.027
*0	3	0.00232	0.01684	0.00002		24.06	18.17	0.24	97.1	28.5	0.030	0.007
3 	3	0.00346	0.10423	0.00151	1.2331	27.91	18.00	17	90.3	33.0	0.159	0.012
4	3	0.00950	0.01957	0.00000	0.2203	19.74	01.2	1.7	00.0 60.0	0.1	0.103	0.041
5	3	0.00569	0.14100	0.00109	0.1172	4.099	20.9	2.0	25.0	0.1	2.21 12.6	50
*7	3	0.02109	0.15972	0.00000 bdl	0.00707	5 517	19.0	42	20.2 76.2	4.0	42.0	0.063
/ *0	2	0.00442	0.02373		0.1040	2.011	10.9	1.0	70.3	4.9	0.203	0.003
٥ ×۵	2	0.00002	0.00377	0.00071	0.1355	3 306	18.8	1.1	99.7 82.6	3.0	0.052	0.093
10	2	0.00155	0.00105	0.00025	0.1204	5 297	10.0	0.70	02.0	5.2	0.029	0.004
Total		0.00155	0.01100	0.00020	0.2047	5.567	21 47	0.79	91.5	5.5	0.102	0.001
Frror-	weighted me	an ane (6 o	ut of 10 rur		-0 95		18 15	0.20				
isoch	on ane (³⁶ Δr/	⁴⁰ Ar vs ³⁹ Δι	/ ⁴⁰ Ar diagra	am) MSW/	_0.00)=1 09		18 13	0.10				
⁴⁰ Ar/ ³⁶	Ar intercent	, vo. / l		,, 100001			299	12				

No.	# grains weight (mg)	$^{36}\text{Ar}_{(\text{atm})}$	$^{\rm 37}{\rm Ar}_{\rm (Ca)}$	$^{38}\mathrm{Ar}_{(\mathrm{CI})}$	$^{39}\text{Ar}_{(\text{K})}$	⁴⁰ Ar _(Tot)	Age (Ma)	±2σ	⁴⁰ Ar* %	³⁹ Ar _κ %	Ca/K	± 2σ
la	ser power (W	/)					(/					
sample	e 709.17–709	9.19, alkali	feldspar/pla	agioclase,	grain size :	>0.18 mm	n, irradiat	ion PAV	/–64, J=0	.0004618	±0.0000)28
Total f	usion data											
*1	1	0.0102	0.0264	0.0004	0.9096	22.61	17.85	0.31	86.6	30.0	0.055	0.009
2	3	0.0060	0.0063	0.0003	0.4819	12.84	19.05	0.56	86.3	15.9	0.025	0.015
3	3	0.0106	0.0926	0.0007	0.4147	12.79	19.29	0.64	75.4	13.7	0.421	0.030
4	3	0.0012	bdl	bdl	0.2186	5.502	19.5	1.0	93.4	7.2	_	
5	4	0.0045	bdl	0.0005	0.0766	10.90	101.3	3.2	87.8	2.5	_	
6	4	0.0134	0.2022	0.0004	0.1640	13.60	48.4	1.6	71.0	5.4	2.33	0.15
*7	2	0.0040	0.0004	0.0004	0.1662	4.957	18.8	1.3	76.2	5.5	0.005	0.087
*8	2	0.0012	0.0032	0.0006	0.2395	5.548	17.99	0.80	93.6	7.9	0.025	0.054
*9	2	0.0012	0.0032	0.0002	0 2607	5 962	17.81	0.79	93.9	8.6	0.023	0.053
*10	2	0.0016	0.0006	bdl	0.09820	2 682	18.6	13	82.0	32	0.01	0.16
Total c	ias age	0.0010	0.0000	bai	0.00020	2.002	22.26	0.28	02.0	0.2	0.01	0.10
Frror-v	veighted me	an age (5 o	ut of 10 rur	ns) MSWD	-0.83		17 93	0.28				
isochr	on age (³⁶ Ar/	⁴⁰ Δr.ve ³⁹ Δr	·/ ⁴⁰ Δr diagra	m MSWI	7-0.00 7-0.43		17.00	0.20				
40 Ar/36	Ar intercent		/ Al ulagia	am), 100 00 1	D=0.40		351	0.00				
AI/ /	Ai intercept						351	92				
sampl	<u>0 831 66-83'</u>	1 68 alkali	foldenar a	rain siza S() 25 mm ir	radiation		1-0.00	04623+0	0000028		
Total f	e 031.00-03	1.00, aikali	ieiuspai, gi		J.25 mm, n	laulation	FAV-04,	5-0.00	04023±0	.0000020		
10tai 11		0.01005	0 001 47	hdl	0.050	70 10	10 70	0.10	00.0	10.0	0 0000	0.0004
ا *0	1	0.01920	0.00147		3.252	79.10	10.73	0.12	92.0	13.0	0.0009	0.0024
2 *0	1	0.00353	0.00523	0.00001	4.039	91.92	10.07	0.09	90.0	17.1	0.0024	0.0023
"3 *4	1	0.00363	0.04793		1.993	46.04	18.72	0.14	97.6	8.4	0.0454	0.0053
^4 +=	1	0.00303	0.00220	0.00088	1.285	29.75	18.64	0.21	97.0	5.4	0.0032	0.0077
*5	1	0.00232	0.02308	0.00053	1.203	27.98	18.83	0.22	97.5	5.1	0.0362	0.0085
*6	3	0.00246	0.02572	0.00121	1.610	36.80	18.59	0.20	98.0	6.8	0.0301	0.0062
*7	1	0.00456	0.00202	0.00047	1.426	33.33	18.62	0.17	95.9	6.0	0.003	0.011
*8	1	0.00195	bdl	bdl	1.062	24.66	18.82	0.23	97.6	4.5	-	
*9	1	0.00133	0.05870	bdl	1.175	26.89	18.71	0.22	98.5	5.0	0.0943	0.0119
*10	1	0.00131	bdl	0.00053	0.9832	22.57	18.72	0.25	98.2	4.2	-	
*11	1	0.00097	bdl	0.00161	0.8143	18.77	18.83	0.22	98.4	3.5	-	
*12	3	0.00177	0.00090	0.00091	1.668	38.22	18.75	0.15	98.6	7.1	0.0010	0.0144
*13	1	0.00089	0.00330	0.00029	0.4195	9.523	18.32	0.50	97.2	1.8	0.0148	0.0375
*14	3	0.00153	0.00310	0.00019	1.514	34.55	18.69	0.15	98.7	6.4	0.0039	0.0125
*15	3	0.00092	0.00026	0.00004	1.148	26.38	18.88	0.21	98.9	4.9	0.0004	0.0220
Total g	jas age						18.71	0.12				
Error-\	weighted mea	an age (15	of 15 runs)	, MSWD=0).93		18.71	0.12				
isochr	on age (³⁶ Ar/'	⁴⁰ Ar vs. ³⁹ Ar	/ ⁴⁰ Ar diagra	am), MSWI	D=0.98		18.69	0.13				
⁴⁰ Ar/ ³⁶	Ar intercept						304	32				
sample	e 953.28–953	3.31, alkali	feldspar, gi	rain size >0).25 mm, ir	radiation	PAV-64,	J=0.00	04629±0	.0000028		
Total f	usion data											
*1	1	0.01191	0.01684	0.00116	5.079	122.5	19.463	0.092	97.1	10.6	0.0063	0.0013
*2	1	0.02354	0.01757	0.00058	4.670	116.2	19.421	0.084	94.0	9.7	0.0071	0.0020
*3	1	0.00596	0.00630	bdl	2.588	62.16	19.39	0.13	97.1	5.4	0.0046	0.0048
*4	1	0.00596	0.05627	bdl	5.929	140.8	19.484	0.079	98.7	12.3	0.0179	0.0020
*5	1	0.00766	0.00982	0.00044	4.105	98.21	19.413	0.091	97.7	8.5	0.0045	0.0019
*6	1	0.00211	0.02411	0.00131	2.135	50.37	19.35	0.14	98.7	4.4	0.0213	0.0057
*7	1	0.00195	0.00975	bdl	2 454	57.92	19.41	0.15	99.0	5.1	0.0075	0.0051
*8	1	0.00200	0.03461	0.00066	2.022	48.02	19.48	0.15	98.7	4.2	0.0323	0.0064
-	-											
	-											

No.	# grains	³⁶ Ar _(atm)	$^{37}Ar_{(Ca)}$	³⁸ Ar _(CI)	³⁹ Ar _(K)	⁴⁰ Ar _(Tot)	Age	±2σ	^{₄₀} Ar* %	³⁹ Ar _κ %	Ca/K	±2σ
	weight (mg)						(Ma)					
la	ser power (W	()										
*9	1	0.00371	0.00672	bdl	2.201	52.91	19.56	0.13	97.9	4.6	0.0058	0.0054
*10	1	0.00237	0.00618	0.00111	2.482	59.01	19.51	0.15	98.8	5.2	0.0047	0.0050
*11	1	0.00271	bdl	bdl	2.027	48.07	19.37	0.12	98.3	4.2	_	
*12	5	0.00382	0.03530	bdl	4.360	103.1	19.43	0.10	98.9	9.1	0.0153	0.0028
*13	2	0.00255	0.02238	bdl	3.409	80.63	19.459	0.081	99.0	7.1	0.0124	0.0035
*14	1	0.00169	0.01094	bdl	2.139	50.80	19.53	0.14	99.0	4.5	0.0096	0.0119
*15	1	0.00247	0.02281	0.00052	2.453	57.85	19.34	0.12	98.7	5.1	0.0175	0.0087
Total g	jas age						19.44	0.12				
Error-	weighted mea	an age (15	of 15 runs)	, MSWD=1.	.06		19.44	0.12				
isochr	on age (³⁶ Ar/ ⁴	⁰ Ar vs. ³⁹ Ar	/ ⁴⁰ Ar diagra	am), MSWD)=1.14		19.45	0.13				
⁴⁰ Ar/ ³⁶ /	Ar intercept						292	28				

sample 953.54–953.56, alkali feldspar, grain size >0.25 mm, irradiation PAV–64, J=0.0004640±0.0000028 Total fusion data

*1	1	0.00865	0.00404	0.00006	0.7982	21.10	19.34	0.31	87.8	5.7	0.010	0.010
*2	1	0.00387	0.00402	bdl	0.8700	21.57	19.55	0.34	94.7	6.2	0.009	0.008
*3	1	0.00113	0.00238	0.00011	1.050	24.95	19.51	0.27	98.6	7.5	0.004	0.013
*4	1	0.01611	0.09551	0.00117	1.095	30.51	19.57	0.25	84.4	7.9	0.164	0.013
*5	2	0.00159	0.00190	0.00011	1.122	26.61	19.39	0.27	98.2	8.1	0.003	0.008
*6	3	0.00474	0.01119	0.00002	2.601	62.66	19.61	0.14	97.7	18.7	0.008	0.003
*7	1	0.00047	0.00007	0.00070	0.5905	14.13	19.73	0.39	99.0	4.2	0.000	0.023
*8	1	0.00242	0.00246	bdl	0.9783	23.62	19.49	0.22	96.9	7.0	0.005	0.016
*9	1	0.00069	0.00080	bdl	0.8507	20.07	19.44	0.21	98.9	6.1	0.002	0.013
*10	2	0.00631	0.00081	bdl	0.9551	24.00	19.30	0.27	92.2	6.9	0.002	0.011
*11	3	0.00431	0.00862	bdl	1.282	31.03	19.33	0.18	95.9	9.2	0.013	0.008
*12	6	0.00509	0.02140	0.00036	1.726	42.06	19.56	0.21	96.4	12.4	0.023	0.012
Total ga	as age						19.49	0.14				
Error-w	eighted n	nean age (12	of 12 runs)	, MSWD=1	.11		19.49	0.14				
isochro	n age (³⁶ /	۸r/ ⁴⁰ Ar vs. ³⁹ Aı	r/40 Ar diagra	am), MSWE	D=1.21		19.50	0.15				
⁴⁰ Ar/ ³⁶ A	r intercep	ot					293	23				

sample 1093.00–1093.04, alkali feldspar, grain size >0.25 mm, irradiation PAV–64, J=0.0004645±0.0000028 Total fusion data

iotai ia	oloni data											
*1	1	0.00860	0.03536	0.00130	3.273	81.05	19.99	0.12	96.8	4.5	0.0204	0.0043
*2	1	0.03497	0.02248	0.00326	4.290	113.4	20.013	0.092	90.9	5.9	0.0099	0.0012
*3	1	0.04713	0.08456	bdl	5.061	135.3	19.978	0.099	89.7	6.9	0.0315	0.0022
*4	1	0.10761	0.01469	0.00261	2.209	84.89	20.03	0.26	62.5	3.0	0.0125	0.0040
*5	1	0.47887	0.01817	0.00262	3.170	217.8	20.06	0.57	35.0	4.3	0.0108	0.0027
*6	1	0.01003	0.07354	0.00086	3.036	76.26	20.12	0.12	96.1	4.2	0.0457	0.0038
*7	1	0.00489	0.04719	0.00074	3.065	75.19	20.05	0.10	98.0	4.2	0.0290	0.0025
*8	1	0.01018	0.14663	bdl	8.070	196.8	20.008	0.077	98.4	11.1	0.0343	0.0024
9	1	0.02552	0.07371	0.00239	5.054	127.4	19.758	0.093	94.0	6.9	0.0275	0.0023
*10	1	0.02030	0.03709	0.00027	7.233	179.7	20.013	0.091	96.6	9.9	0.0097	0.0016
*11	1	0.00581	0.01489	bdl	2.780	68.47	20.01	0.13	97.5	3.8	0.0101	0.0030
*12	1	0.02047	0.13845	0.00100	5.251	132.4	20.049	0.087	95.4	7.2	0.0497	0.0042
*13	1	0.07014	0.25224	0.00367	5.403	150.1	19.955	0.099	86.2	7.4	0.0881	0.0070
*14	1	0.01867	0.00398	0.00063	3.840	98.34	20.14	0.10	94.4	5.3	0.0020	0.0049
*15	1	0.00191	0.01517	0.00026	1.603	39.07	20.01	0.19	98.5	2.2	0.018	0.011
*16	1	0.00350	0.00540	bdl	2.171	52.86	19.89	0.16	98.0	3.0	0.0047	0.0077

No.	# grains	³⁶ Ar _(atm)	$^{37}Ar_{(Ca)}$	³⁸ Ar _(CI)	³⁹ Ar _(K)	⁴⁰ Ar _(Tot)	Age	±2σ	40 Ar* %	³⁹ Ar _κ %	Ca/K	±2σ
	weight (mg)						(Ma)					
la	aser power (W	')										
*17	6	0.01137	0.05664	bdl	5.413	132.9	19.938	0.083	97.4	7.4	0.0197	0.0039
*18	1	0.00286	0.00750	0.00046	1.956	47.88	20.04	0.12	98.2	2.7	0.007	0.016
Total	gas age						20.00	0.13				
Error-	weighted mea	an age (17	out of 18 ru	uns), MSWE	D=1.13		20.01	0.12				
isoch	ron age (³⁶ Ar/ ⁴	⁰ Ar vs. ³⁹ Ar	/40 Ar diagra	am), MSWD	=1.20		20.01	0.13				
⁴⁰ Ar/ ³⁶	Ar intercept						295.4	4.0				

Errors on the single runs are analytical uncertainties. Errors on total gas and error-weighted mean ages also include the unceratinty in *J* value. *, runs used in the weighted mean calculation. bdl, below detection limit