101 research outputs found

    Hospitableness and sustainable development: New responsibilities and demands in the host-guest relationship

    Get PDF
    How does the current paradigm of the host-guest relationship cause the hospitality industry to lag behind in sustainable development? Hospitality is often defined as “a feeling of being welcome”. It is about “welcoming the stranger: a person who comes today and stays tomorrow”, or “a stranger who is treated like a god”. In the current paradigm on the concept of “genuine hospitableness”, the authors see a host indulging his guest. This hospitable host does not want to bother the guest with complex issues of climate change or scarce resources but rather wants to treat him or her as “a god”: the host acts as “a servant”. This view on genuine hospitableness might hinder sustainable practices in hospitality organisations, especially if the (perceived) wishes of the guest are not sustainable. The authors argue that genuine hospitableness needs to be redefined and the concept of the host needs to be expanded to “host as shepherd”. The metaphor of a shepherd emphasises the extended responsibility of the host, in which the host not only takes care of the actual guest, but does so in a more comprehensive way. This includes the future guest, the local community and the environment. Additionally, the authors also see sustainable practices as being hindered by a disconnect between genuine hospitableness and the execution of this idea in hospitality service skills.Keywords: organisational behaviour, sustainable practices, organisational change, hostmanship, servant vs shepherd, responsible busines

    Impaired Hepatic Vitamin A Metabolism in NAFLD Mice Leading to Vitamin A Accumulation in Hepatocytes

    Get PDF
    BACKGROUND & AIMS: Systemic retinol (vitamin A) homeostasis is controlled by the liver, involving close collaboration between hepatocytes and hepatic stellate cells (HSCs). Genetic variants in retinol metabolism (PNPLA3 and HSD17B13) are associated with non-alcoholic fatty liver disease (NAFLD) and disease progression. Still, little mechanistic details are known about hepatic vitamin A metabolism in NAFLD, which may affect carbohydrate and lipid metabolism, inflammation, oxidative stress and the development of fibrosis and cancer, e.g. all risk factors of NAFLD. METHODS: Here, we analyzed vitamin A metabolism in 2 mouse models of NAFLD; mice fed a high-fat, high-cholesterol (HFC) diet and Leptin(ob) mutant (ob/ob) mice. RESULTS: Hepatic retinol and retinol binding protein 4 (RBP4) levels were significantly reduced in both mouse models of NAFLD. In contrast, hepatic retinyl palmitate levels (the vitamin A storage form) were significantly elevated in these mice. Transcriptome analysis revealed a hyperdynamic state of hepatic vitamin A metabolism, with enhanced retinol storage and metabolism (upregulated Lrat, Dgat1, Pnpla3, Raldh's and RAR/RXR-target genes) in fatty livers, in conjunction with induced hepatic inflammation (upregulated Cd68, Tnf alpha, Nos2, Il1 beta, 11-6) and fibrosis (upregulated Colla1, Acta2, Tgf beta, Timp1). Autofluorescence analyses revealed prominent vitamin A accumulation in hepatocytes rather than HSC in HFC-fed mice. Palmitic acid exposure increased Lrat mRNA levels in primary rat hepatocytes and promoted retinyl palmitate accumulation when co-treated with retinol, which was not detected for similarly-treated primary rat HSCs. CONCLUSION: NAFLD leads to cell type-specific rearrangements in retinol metabolism leading to vitamin A accumulation in hepatocytes. This may promote disease progression and/or affect therapeutic approaches targeting nuclear receptors

    Electronic transport in DNA

    Get PDF
    We study the electronic properties of DNA by way of a tight-binding model applied to four particular DNA sequences. The charge transfer properties are presented in terms of localization lengths (crudely speaking, the length over which electrons travel). Various types of disorder, including random potentials, are employed to account for different real environments. We have performed calculations on poly(dG)-poly(dC), telomeric-DNA, random-ATGC DNA, and l-DNA. We find that random and l-DNA have localization lengths allowing for electron motion among a few dozen basepairs only. A novel enhancement of localization lengths is observed at particular energies for an increasing binary backbone disorder. We comment on the possible biological relevance of sequence-dependent charge transfer in DNA

    Porphyromonas Gingivalis and E-coli induce different cytokine production patterns in pregnant women

    Get PDF
    OBJECTIVE: Pregnant individuals of many species, including humans, are more sensitive to various bacteria or their products as compared with non-pregnant individuals. Pregnant individuals also respond differently to different bacteria or their products. Therefore, in the present study, we evaluated whether the increased sensitivity of pregnant women to bacterial products and their heterogeneous response to different bacteria was associated with differences in whole blood cytokine production upon stimulation with bacteria or their products. METHODS: Blood samples were taken from healthy pregnant and age-matched non-pregnant women and ex vivo stimulated with bacteria or LPS from Porphyromonas Gingivalis (Pg) or E-coli for 24 hrs. TNFα, IL-1ß, IL-6, IL-12 and IL-10 were measured using a multiplex Luminex system. RESULTS: We observed a generally lower cytokine production after stimulation with Pg bacteria or it's LPS as compared with E-coli bacteria. However, there was also an effect of pregnancy upon cytokine production: in pregnant women the production of IL-6 upon Pg stimulation was decreased as compared with non-pregnant women. After stimulation with E-coli, the production of IL-12 and TNFα was decreased in pregnant women as compared with non-pregnant women. CONCLUSION: Our results showed that cytokine production upon bacterial stimulation of whole blood differed between pregnant and non-pregnant women, showing that the increased sensitivity of pregnant women may be due to differences in cytokine production. Moreover, pregnancy also affected whole blood cytokine production upon Pg or E-coli stimulation differently. Thus, the different responses of pregnant women to different bacteria or their products may result from variations in cytokine production

    NF-kappa B p65 serine 467 phosphorylation sensitizes mice to weight gain and TNF alpha-or diet-induced inflammation

    Get PDF
    The NF-kappa B family of transcription factors is essential for an effective immune response, but also controls cell metabolism, proliferation and apoptosis. Its broad relevance and the high connectivity to diverse signaling pathways require a tight control of NF-kappa B activity. To investigate the control of NF-kappa B activity by phosphorylation of the NF-kappa B p65 subunit, we generated a knock-in mouse model in which serine 467 (the mouse homolog of human p65 serine 468) was replaced with a non-phosphorylatable alanine (S467A). This substitution caused reduced p65 protein synthesis and diminished TNF alpha-induced expression of a selected group of NF-kappa B dependent genes. Intriguingly, high-fat fed S467A mice displayed increased locomotor activity and energy expenditure, which coincided with a reduced body weight gain. Although glucose metabolism or insulin sensitivity was not improved, diet-induced liver inflammation was diminished in S467A mice. Altogether, this study demonstrates that phosphorylation of p65 serine 467 augment NF-kappa B activity and exacerbates various deleterious effects of overnutrition in mice.</p

    Biallelic NDC1 variants that interfere with ALADIN binding are associated with neuropathy and triple A-like syndrome

    Get PDF
    Nuclear pore complexes (NPCs) regulate nucleocytoplasmic transport and are anchored in the nuclear envelope by the transmembrane nucleoporin NDC1. NDC1 is essential for post-mitotic NPC assembly and the recruitment of ALADIN to the nuclear envelope. While no human disorder has been associated to one of the three transmembrane nucleoporins, biallelic variants in AAAS, encoding ALADIN, cause triple A syndrome (Allgrove syndrome). Triple A syndrome, characterized by alacrima, achalasia, and adrenal insufficiency, often includes progressive demyelinating polyneuropathy and other neurological complaints. In this report, diagnostic exome and/or RNA sequencing was performed in seven individuals from four unrelated consanguineous families with AAAS-negative triple A syndrome. Molecular and clinical studies followed to elucidate the pathogenic mechanism. The affected individuals presented with intellectual disability, motor impairment, severe demyelinating with secondary axonal polyneuropathy, alacrima, and achalasia. None of the affected individuals has adrenal insufficiency. All individuals presented with biallelic NDC1 in-frame deletions or missense variants that affect amino acids and protein domains required for ALADIN binding. No other significant variants associated with the phenotypic features were reported. Skin fibroblasts derived from affected individuals show decreased recruitment of ALADIN to the NE and decreased post-mitotic NPC insertion, confirming pathogenicity of the variants. Taken together, our results implicate biallelic NDC1 variants in the pathogenesis of polyneuropathy and a triple A-like disorder without adrenal insufficiency, by interfering with physiological NDC1 functions, including the recruitment of ALADIN to the NPC.</p

    Sheep-Specific Immunohistochemical Panel for the Evaluation of Regenerative and Inflammatory Processes in Tissue-Engineered Heart Valves

    Get PDF
    The creation of living heart valve replacements via tissue engineering is actively being pursued by many research groups. Numerous strategies have been described, aimed either at culturing autologous living valves in a bioreactor (in vitro) or inducing endogenous regeneration by the host via resorbable scaffolds (in situ). Whereas a lot of effort is being invested in the optimization of heart valve scaffold parameters and culturing conditions, the pathophysiological in vivo remodeling processes to which tissue-engineered heart valves are subjected upon implantation have been largely under-investigated. This is partly due to the unavailability of suitable immunohistochemical tools specific to sheep, which serves as the gold standard animal model in translational research on heart valve replacements. Therefore, the goal of this study was to comprise and validate a comprehensive sheep-specific panel of antibodies for the immunohistochemical analysis of tissue-engineered heart valve explants. For the selection of our panel we took inspiration from previous histopathological studies describing the morphology, extracellular matrix composition and cellular composition of native human heart valves throughout development and adult stages. Moreover, we included a range of immunological markers, which are particularly relevant to assess the host inflammatory response evoked by the implanted heart valve. The markers specifically identifying extracellular matrix components and cell phenotypes were tested on formalin-fixed paraffin-embedded sections of native sheep aortic valves. Markers for inflammation and apoptosis were tested on ovine spleen and kidney tissues. Taken together, this panel of antibodies could serve as a tool to study the spatiotemporal expression of proteins in remodeling tissue-engineered heart valves after implantation in a sheep model, thereby contributing to our understanding of the in vivo processes which ultimately determine long-term success or failure of tissue-engineered heart valves

    SMPD4 regulates mitotic nuclear envelope dynamics and its loss causes microcephaly and diabetes

    Get PDF
    Biallelic loss-of-function variants in SMPD4 cause a rare and severe neurodevelopmental disorder with progressive congenital microcephaly and early death. SMPD4 encodes a sphingomyelinase that hydrolyses sphingomyelin into ceramide at neutral pH and can thereby affect membrane lipid homeostasis. SMPD4 localizes to the membranes of the endoplasmic reticulum and nuclear envelope and interacts with nuclear pore complexes (NPC). We refine the clinical phenotype of loss-of-function SMPD4 variants by describing five individuals from three unrelated families with longitudinal data due to prolonged survival. All individuals surviving beyond infancy developed insulin-dependent diabetes, besides presenting with a severe neurodevelopmental disorder and microcephaly, making diabetes one of the most frequent age-dependent non-cerebral abnormalities. We studied the function of SMPD4 at the cellular and organ levels. Knock-down of SMPD4 in human neural stem cells causes reduced proliferation rates and prolonged mitosis. Moreover, SMPD4 depletion results in abnormal nuclear envelope breakdown and reassembly during mitosis and decreased post-mitotic NPC insertion. Fibroblasts from affected individuals show deficient SMPD4-specific neutral sphingomyelinase activity, without changing (sub)cellular lipidome fractions, which suggests a local function of SMPD4 on the nuclear envelope. In embryonic mouse brain, knockdown of Smpd4 impairs cortical progenitor proliferation and induces premature differentiation by altering the balance between neurogenic and proliferative progenitor cell divisions. We hypothesize that, in individuals with SMPD4-related disease, nuclear envelope bending, which is needed to insert NPCs in the nuclear envelope, is impaired in the absence of SMPD4 and interferes with cerebral corticogenesis and survival of pancreatic beta cells.</p
    • …
    corecore