116 research outputs found

    A low-energy perspective on the minimal left-right symmetric model

    Get PDF
    We perform a global analysis of the low-energy phenomenology of the minimal left-right symmetric model (mLRSM) with parity symmetry. We match the mLRSM to the Standard Model Effective Field Theory Lagrangian at the left-right-symmetry breaking scale and perform a comprehensive fit to low-energy data including mesonic, neutron, and nuclear β\beta-decay processes, ΔF=1\Delta F=1 and ΔF=2\Delta F=2 CP-even and -odd processes in the bottom and strange sectors, and electric dipole moments (EDMs) of nucleons, nuclei, and atoms. We fit the Cabibbo-Kobayashi-Maskawa and mLRSM parameters simultaneously and determine a lower bound on the mass of the right-handed WRW_R boson. In models where a Peccei-Quinn mechanism provides a solution to the strong CP problem, we obtain MWR5.5M_{W_R} \gtrsim 5.5 TeV at 95%95\% C.L. which can be significantly improved with next-generation EDM experiments. In the PP-symmetric mLRSM without a Peccei-Quinn mechanism we obtain a more stringent constraint MWR17M_{W_R} \gtrsim 17 TeV at 95%95\% C.L., which is difficult to improve with low-energy measurements alone. In all cases, the additional scalar fields of the mLRSM are required to be a few times heavier than the right-handed gauge bosons. We consider a recent discrepancy in tests of first-row unitarity of the CKM matrix. We find that, while TeV-scale WRW_R bosons can alleviate some of the tension found in the Vud,usV_{ud,us} determinations, a solution to the discrepancy is disfavored when taking into account other low-energy observables within the mLRSM.Comment: 42 pages plus appendices. Published versio

    Palomar adaptive optics project: status and performance

    Get PDF
    We describe the current performance of the Palomar 200 inch (5 m) adaptive optics system, which in December of 1998 achieved its first high order (241 actuators) lock on a natural guide star. In the K band (2.2 micrometer), the system has achieved Strehl ratios as high as 50% in the presence of 1.0 arcsecond seeing (0.5 micrometer). Predictions of the system's performance based on the analysis of real-time wavefront sensor telemetry data and an analysis based on a fitted Kolmogorov atmospheric model are shown to both agree with the observed science image performance. Performance predictions for various seeing conditions are presented and an analysis of the error budget is used to show which subsystems limit the performance of the AO system under various atmospheric conditions

    Palomar adaptive optics project: status and performance

    Get PDF
    We describe the current performance of the Palomar 200 inch (5 m) adaptive optics system, which in December of 1998 achieved its first high order (241 actuators) lock on a natural guide star. In the K band (2.2 micrometer), the system has achieved Strehl ratios as high as 50% in the presence of 1.0 arcsecond seeing (0.5 micrometer). Predictions of the system's performance based on the analysis of real-time wavefront sensor telemetry data and an analysis based on a fitted Kolmogorov atmospheric model are shown to both agree with the observed science image performance. Performance predictions for various seeing conditions are presented and an analysis of the error budget is used to show which subsystems limit the performance of the AO system under various atmospheric conditions

    Habitual dietary intake of IBD patients differs from population controls:a case-control study

    Get PDF
    BACKGROUND: Since evidence-based dietary guidelines are lacking for IBD patients, they tend to follow "unguided" dietary habits; potentially leading to nutritional deficiencies and detrimental effects on disease course. Therefore, we compared dietary intake of IBD patients with controls. METHODS: Dietary intake of macronutrients and 25 food groups of 493 patients (207 UC, 286 CD), and 1291 controls was obtained via a food frequency questionnaire. RESULTS: 38.6% of patients in remission had protein intakes below the recommended 0.8 g/kg and 86.7% with active disease below the recommended 1.2 g/kg. Multinomial logistic regression, corrected for age, gender and BMI, showed that (compared to controls) UC patients consumed more meat and spreads, but less alcohol, breads, coffee and dairy; CD patients consumed more non-alcoholic drinks, potatoes, savoury snacks and sugar and sweets but less alcohol, dairy, nuts, pasta and prepared meals. Patients with active disease consumed more meat, soup and sugar and sweets but less alcohol, coffee, dairy, prepared meals and rice; patients in remission consumed more potatoes and spreads but less alcohol, breads, dairy, nuts, pasta and prepared meals. CONCLUSIONS: Patients avoiding potentially favourable foods and gourmandizing potentially unfavourable foods are of concern. Special attention is needed for protein intake in the treatment of these patients

    Thyrotroph Embryonic Factor Regulates Light-Induced Transcription of Repair Genes in Zebrafish Embryonic Cells

    Get PDF
    Numerous responses are triggered by light in the cell. How the light signal is detected and transduced into a cellular response is still an enigma. Each zebrafish cell has the capacity to directly detect light, making this organism particularly suitable for the study of light dependent transcription. To gain insight into the light signalling mechanism we identified genes that are activated by light exposure at an early embryonic stage, when specialised light sensing organs have not yet formed. We screened over 14,900 genes using micro-array GeneChips, and identified 19 light-induced genes that function primarily in light signalling, stress response, and DNA repair. Here we reveal that PAR Response Elements are present in all promoters of the light-induced genes, and demonstrate a pivotal role for the PAR bZip transcription factor Thyrotroph embryonic factor (Tef) in regulating the majority of light-induced genes. We show that tefβ transcription is directly regulated by light while transcription of tefα is under circadian clock control at later stages of development. These data leads us to propose their involvement in light-induced UV tolerance in the zebrafish embryo

    Cohort profile: LifeLines DEEP, a prospective, general population cohort study in the northern Netherlands:Study design and baseline characteristics

    Get PDF
    Purpose There is a critical need for population-based prospective cohort studies because they follow individuals before the onset of disease, allowing for studies that can identify biomarkers and disease-modifying effects, and thereby contributing to systems epidemiology. Participants This paper describes the design and baseline characteristics of an intensively examined subpopulation of the LifeLines cohort in the Netherlands. In this unique subcohort, LifeLines DEEP, we included 1539 participants aged 18 years and older. Findings to date We collected additional blood (n=1387), exhaled air (n=1425) and faecal samples (n=1248), and elicited responses to gastrointestinal health questionnaires (n=1176) for analysis of the genome, epigenome, transcriptome, microbiome, metabolome and other biological levels. Here, we provide an overview of the different data layers in LifeLines DEEP and present baseline characteristics of the study population including food intake and quality of life. We also describe how the LifeLines DEEP cohort allows for the detailed investigation of genetic, genomic and metabolic variation for a wide range of phenotypic outcomes. Finally, we examine the determinants of gastrointestinal health, an area of particular interest to us that can be addressed by LifeLines DEEP. Future plans We have established a cohort of which multiple data levels allow for the integrative analysis of populations for translation of this information into biomarkers for disease, and which will offer new insights into disease mechanisms and prevention

    Lifelines NEXT:a prospective birth cohort adding the next generation to the three-generation Lifelines cohort study

    Get PDF
    Epidemiological research has shown there to be a strong relationship between preconceptional, prenatal, birth and early-life factors and lifelong health. The Lifelines NEXT is a birth cohort designed to study the effects of intrinsic and extrinsic determinants on health and disease in a four-generation design. It is embedded within the Lifelines cohort study, a prospective three-generation population-based cohort study recording the health and health-related aspects of 167,729 individuals living in Northern Netherlands. In Lifelines NEXT we aim to include 1500 pregnant Lifelines participants and intensively follow them, their partners and their children until at least 1 year after birth. Longer-term follow-up of physical and psychological health will then be embedded following Lifelines procedures. During the Lifelines NEXT study period biomaterials-including maternal and neonatal (cord) blood, placental tissue, feces, breast milk, nasal swabs and urine-will be collected from the mother and child at 10 time points. We will also collect data on medical, social, lifestyle and environmental factors via questionnaires at 14 different time points and continuous data via connected devices. The extensive collection of different (bio)materials from mother and child during pregnancy and afterwards will provide the means to relate environmental factors including maternal and neonatal microbiome composition) to (epi)genetics, health and developmental outcomes. The nesting of the study within Lifelines enables us to include preconceptional transgenerational data and can be used to identify other extended families within the cohort

    Probing exotic phenomena at the interface of nuclear and particle physics with the electric dipole moments of diamagnetic atoms: A unique window to hadronic and semi-leptonic CP violation

    Full text link
    The current status of electric dipole moments of diamagnetic atoms which involves the synergy between atomic experiments and three different theoretical areas -- particle, nuclear and atomic is reviewed. Various models of particle physics that predict CP violation, which is necessary for the existence of such electric dipole moments, are presented. These include the standard model of particle physics and various extensions of it. Effective hadron level combined charge conjugation (C) and parity (P) symmetry violating interactions are derived taking into consideration different ways in which a nucleon interacts with other nucleons as well as with electrons. Nuclear structure calculations of the CP-odd nuclear Schiff moment are discussed using the shell model and other theoretical approaches. Results of the calculations of atomic electric dipole moments due to the interaction of the nuclear Schiff moment with the electrons and the P and time-reversal (T) symmetry violating tensor-pseudotensor electron-nucleus are elucidated using different relativistic many-body theories. The principles of the measurement of the electric dipole moments of diamagnetic atoms are outlined. Upper limits for the nuclear Schiff moment and tensor-pseudotensor coupling constant are obtained combining the results of atomic experiments and relativistic many-body theories. The coefficients for the different sources of CP violation have been estimated at the elementary particle level for all the diamagnetic atoms of current experimental interest and their implications for physics beyond the standard model is discussed. Possible improvements of the current results of the measurements as well as quantum chromodynamics, nuclear and atomic calculations are suggested.Comment: 46 pages, 19 tables and 16 figures. A review article accepted for EPJ

    The Maternal-Effect Gene cellular island Encodes Aurora B Kinase and Is Essential for Furrow Formation in the Early Zebrafish Embryo

    Get PDF
    Females homozygous for a mutation in cellular island (cei) produce embryos with defects in cytokinesis during early development. Analysis of the cytoskeletal events associated with furrow formation reveal that these defects include a general delay in furrow initiation as well as a complete failure to form furrow-associated structures in distal regions of the blastodisc. A linkage mapping-based candidate gene approach, including transgenic rescue, shows that cei encodes the zebrafish Aurora B kinase homologue. Genetic complementation analysis between the cei mutation and aurB zygotic lethal mutations corroborate gene assignment and reveal a complex nature of the maternal-effect cei allele, which appears to preferentially affect a function important for cytokinesis in the early blastomeres. Surprisingly, in cei mutant embryos a short yet otherwise normal furrow forms in the center of the blastodisc. Furrow formation is absent throughout the width of the blastodisc in cei mutant embryos additionally mutant for futile cycle, which lack a spindle apparatus, showing that the residual furrow signal present in cei mutants is derived from the mitotic spindle. Our analysis suggests that partially redundant signals derived from the spindle and astral apparatus mediate furrow formation in medial and distal regions of the early embryonic blastomeres, respectively, possibly as a spatial specialization to achieve furrow formation in these large cells. In addition, our data also suggest a role for Cei/AurB function in the reorganization of the furrow-associated microtubules in both early cleavage- and somite-stage embryos. In accordance with the requirement for cei/aurB in furrow induction in the early cleavage embryo, germ plasm recruitment to the forming furrow is also affected in embryos lacking normal cei/aurB function

    The Circadian System Is a Target and Modulator of Prenatal Cocaine Effects

    Get PDF
    BACKGROUND. Prenatal exposure to cocaine can be deleterious to embryonic brain development, but the results in humans remain controversial, the mechanisms involved are not well understood and effective therapies are yet to be designed. We hypothesize that some of the prenatal effects of cocaine might be related to dysregulation of physiological rhythms due to alterations in the integrating circadian clock function. METHODOLOGY AND PRINCIPLE FINDINGS. Here we introduce a new high-throughput genetically well-characterized diurnal vertebrate model for studying the mechanisms of prenatal cocaine effects by demonstrating reduced viability and alterations in the pattern of neuronal development following repeated cocaine exposure in zebrafish embryos. This effect is associated with acute cocaine-induced changes in the expression of genes affecting growth (growth hormone, zGH) and neurotransmission (dopamine transporter, zDAT). Analysis of circadian gene expression, using quantitative real-time RT-PCR (QPCR), demonstrates that cocaine acutely and dose-dependently changes the expression of the circadian genes (zPer-3, zBmal-1) and genes encoding melatonin receptors (zMelR) that mediate the circadian message to the entire organism. Moreover, the effects of prenatal cocaine depend on the time of treatment, being more robust during the day, independent of whether the embryos are raised under the light-dark cycle or in constant light. The latter suggests involvement of the inherited circadian factors. The principal circadian hormone, melatonin, counteracts the effects of cocaine on neuronal development and gene expression, acting via specific melatonin receptors. CONCLUSIONS/SIGNIFICANCE. These findings demonstrate that, in a diurnal vertebrate, prenatal cocaine can acutely dysregulate the expression of circadian genes and those affecting melatonin signaling, growth and neurotransmission, while repeated cocaine exposure can alter neuronal development. Daily variation in these effects of cocaine and their attenuation by melatonin suggest a potential prophylactic or therapeutic role for circadian factors in prenatal cocaine exposure.National Institutes of Health (DA1541801, MH 065528); National Institute on Drug Abuse (DA-4-7733
    corecore