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Abstract: We perform a global analysis of the low-energy phenomenology of the minimal
left-right symmetric model (mLRSM) with parity symmetry. We match the mLRSM
to the Standard Model Effective Field Theory Lagrangian at the left-right-symmetry
breaking scale and perform a comprehensive fit to low-energy data including mesonic,
neutron, and nuclear β-decay processes, ∆F = 1 and ∆F = 2 CP-even and -odd processes
in the bottom and strange sectors, and electric dipole moments (EDMs) of nucleons,
nuclei, and atoms. We fit the Cabibbo-Kobayashi-Maskawa and mLRSM parameters
simultaneously and determine a lower bound on the mass of the right-handed WR boson.
In models where a Peccei-Quinn mechanism provides a solution to the strong CP problem,
we obtain MWR

& 5.5TeV at 95% C.L. which can be significantly improved with next-
generation EDM experiments. In the P -symmetric mLRSM without a Peccei-Quinn
mechanism we obtain a more stringent constraint MWR

& 17TeV at 95% C.L., which is
difficult to improve with low-energy measurements alone. In all cases, the additional scalar
fields of the mLRSM are required to be a few times heavier than the right-handed gauge
bosons. We consider a recent discrepancy in tests of first-row unitarity of the CKM matrix.
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We find that, while TeV-scale WR bosons can alleviate some of the tension found in the
Vud,us determinations, a solution to the discrepancy is disfavored when taking into account
other low-energy observables within the mLRSM.
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1 Introduction

Left-right (LR) symmetric models [2–6] provide a framework for a dynamical theory of
parity (P ) violation and led to the prediction of right-handed neutrinos and the see-saw
mechanism, well before neutrino oscillations were discovered [7, 8]. Apart from providing a
natural explanation of parity violation and neutrino masses, LR models give rise to a rich
phenomenology. For example, due to the see-saw mechanism, LR models violate lepton
number, which leads to an interesting interplay of different contributions to neutrinoless
double beta decay [7–14]. The resulting signal could very well be measurable, even in the
normal hierarchy with small neutrino masses. The high-energy analogue, the so-called Keung-
Senjanović process [15], is a promising probe of the same source of lepton number violation
at the LHC or future colliders. In addition, the presence of right-handed charged currents
mediated by WR exchange and of heavy scalar bosons with flavor-changing interactions
lead to a rich flavor phenomenology, with new contributions to a broad range of processes
including CP violation in meson mixing and decays [16–22], nuclear β-decay [23, 24],
electroweak precision observables [25–27], and electric dipole moments (EDMs) of leptons,
nucleons, nuclei, atoms, and molecules [28–31].

Direct searches for right-handed gauge bosons at colliders constrain their masses to
be larger than a few TeV [32–34]. To accommodate the non-observation of large flavor-
changing-neutral-current processes, the new scalars associated with left-right models must
have even larger masses, & O(10)TeV. The gap between the right-handed scale, where
parity is spontaneously broken, and the electroweak scale makes left-right symmetric models
amenable to effective field theory (EFT) techniques. In particular, at the right-handed scale
the theory can be matched onto the Standard Model EFT1 (SMEFT). Although a large
number of SMEFT operators is induced, the associated Wilson coefficients only depend on

1Depending on the mass scale of right-handed neutrinos, it might be appropriate to match to the SMEFT
extended with right-handed neutrinos instead [35–37]. In this work, we focus on the quark sector of left-right
models and do not discuss leptonic observables in great detail.

– 1 –



J
H
E
P
1
1
(
2
0
2
1
)
1
2
7

a handful of fundamental parameters. The relatively small set of parameters (compared
to, for instance, supersymmetric models) allows for a global analysis of the parameter
space. Several such analyses have been performed in the literature, see e.g. [26, 38–40].
For instance, recently refs. [39, 40] considered the correlation between direct and indirect
CP violation in kaon decays and the neutron electric dipole moment, setting lower bounds
on the WR mass (for earlier work including also ∆F = 2 transitions in B mesons, see e.g.
refs. [22, 41]). A large amount of work has also been devoted to the phenomenology of the
leptonic sector of left-right models [10, 42–47].

In this work we investigate the minimal left-right symmetric model with a generalized
P symmetry. In particular, we focus on the hadronic sector of the model and leave the
interesting phenomenology related to the lepton sector (from neutrinoless double beta
decay to lepton flavor violation) for future work. Our aim is to perform a true global
analysis of the low-energy phenomenology of the P -symmetric minimal left-right model
in order to determine the allowed parameter space of the model, focusing mainly on a
potential lower bound on the WR mass. As the SMEFT operators affect many processes
that are used to extract the elements of the Cabibbo-Kobayashi-Maskawa (CKM) quark
mixing matrix, it is not consistent to simply use the values for the quark mixing angles and
phases obtained from a SM fit. We therefore extend previous analyses and refit the CKM
parameters in combination with the new parameters associated with left-right models (which
we denote by LR parameters). This requires us to include a large number of observables
that are discussed in detail in this work. At the same time this allows us to consider
possible beyond-the-Standard-Model (BSM) solutions to recent discrepancies in some of
these observables, in particular the determinations of the Vud and Vus CKM elements, in a
consistent manner. This analysis draws from ref. [48] which performed a similar study for
one specific dimension-six SMEFT operator that is induced in left-right symmetric models.

The hadronic observables we consider depend on perturbative and non-perturbative
theoretical quantities and controlling their uncertainties is crucial to obtain strong bounds on
BSM physics. Advances in lattice QCD have reduced the error on decay constants and form
factors entering the theoretical expressions of leptonic and semileptonic meson decays to the
permille level in the case of light quarks and percent level for heavy quarks [49]. Similarly,
the local matrix elements of ∆F = 2 operators required for εK and the Bd,s − B̄d,s mass
splittings have uncertainties of a few percent. More recently, the first complete lattice QCD
calculations of K → ππ matrix elements have appeared [50], leading to a SM prediction
for direct CP violation in kaon decays with ∼ 40% error. These calculations have also
helped to reduce the error on hadronic electric dipole moments [31, 48]. In addition to the
inclusion of a large number of observables, our analysis improves upon previous literature
by using state-of-the-art theoretical predictions for hadronic and nuclear matrix elements
and by taking advantage of recent theoretical advances like the improved SM prediction
of εK [51]. Our use of the SMEFT framework allows us to include QCD corrections, in
particular those arising between µ = MWR

and µ = mW , in a systematic way. We discuss
the residual theoretical uncertainties, which mostly affect the nucleon and nuclear EDMs,
∆F = 2 processes dominated by long-distance contributions (such as the K − K̄ mass
difference or D − D̄ oscillations), and hadronic B meson decays.
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Although the mLRSM leads to interesting signatures at high energies [15, 41, 52, 53],
here we focus on low-energy phenomenology and do not explicitly include LHC observables
in our analysis. While such a combination is certainly interesting, an EFT analysis might
not be appropriate for collider phenomenology, depending on the mass of BSM fields. The
indirect bounds we find turn out to be sufficiently strong for most of the parameter space to
ensure that direct production of right-handed gauge bosons is not yet accessible at the LHC.
The combined analysis of low- and high-energy probes within the mLRSM is certainly very
interesting and left to future work.

We start by introducing the LR model in section 2. We subsequently integrate out
the heavy LR fields and match onto the SMEFT in section 3, where we also discuss the
renormalization group (RG) evolution to low energies and the subsequent matching onto the
SU(3)c × U(1)QED invariant EFT, known as LEFT. Section 4 performs the matching onto
the low-energy description of QCD, chiral perturbation theory (χPT), which is relevant
for low-energy hadronic and nuclear observables. Some of the most important observables
included in our analyses are described in section 5, where we also discuss the impact of
the new features of our analysis for the ∆F = 2 observables that have been the focus of
previous works [40, 41], while others are relegated to appendix D. We finally present our
results in section 6 and conclude in section 7, while several Appendices are dedicated to
technical details.

2 Minimal left-right models

2.1 Particle content

The gauge group of LR models [2–6] is given by SU(2)L×SU(2)R×U(1)B−L. The fermions
are assigned to representations of the above gauge group as follows,

QL =
(
uL
dL

)
∈ (2, 1, 1/3) , QR =

(
uR
dR

)
∈ (1, 2, 1/3) ,

LL =
(
νL
lL

)
∈ (2, 1,−1) , LR =

(
νR
lR

)
∈ (1, 2,−1) . (2.1)

In the scalar sector, a field transforming under both SU(2)L and SU(2)R, φ ∈ (2, 2∗, 0), is
introduced, which allows for interactions that give rise to the mass terms of the fermions
after electroweak symmetry breaking (EWSB). Additional scalar fields are then used to
break the LR gauge group to that of the SM. We focus on the version of the LR model,
called the minimal left-right symmetric model (mLRSM), in which this is done with two
triplets, ∆L,R, assigned to (3, 1, 2) and (1, 3, 2), respectively. These fields can be written as

φ =
(
φ0

1 φ+
2

φ−1 φ0
2

)
, ∆L,R =

(
δ+
L,R/
√

2 δ++
L,R

δ0
L,R −δ+

L,R/
√

2

)
, (2.2)

and they transform as φ → ULφU
†
R, ∆L,R → UL,R∆L,RU

†
L,R under SU(2)L,R transforma-

tions.
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Having specified the particle content we can write the complete Lagrangian as follows

L = iQ̄L /DQL + iQ̄R /DQR + iL̄L /DLL + iL̄R /DLR (2.3)

− 1
4W

I
LµνW

I µν
L − 1

4W
I
RµνW

I µν
R − 1

4BµνB
µν − 1

4G
a
µνG

aµν

+ Tr
[
(Dµφ)†Dµφ

]
+ Tr

[
(Dµ∆L)†Dµ∆L

]
+ Tr

[
(Dµ∆R)†Dµ∆R

]
− V (φ,∆L,R)

−
[
Q̄L
(
Γφ+ Γ̃φ̃

)
QR + L̄L

(
Γlφ+ Γ̃lφ̃

)
LR + L̄cLiτ2∆LYLLL + L̄cRiτ2∆RYRLR + h.c.

]
− θ g2

s

32π2G
a
µνG̃

aµν − θR
g2
R

32π2W
I
RµνW̃

I µν
R − θL

g2
L

32π2W
I
LµνW̃

I µν
L − θB−L

g2
B−L

32π2 BµνB̃
µν ,

where I and a are SU(2)L,R and SU(3)c indices,Wµν
L,R, Bµν , and Gµν are the field strengths of

the SU(2)L,R, U(1)B−L, and SU(3)c gauge groups, while gL,R, gB−L, and gs are their gauge
couplings. Furthermore, ψc = Cψ̄T indicates charge conjugation and φ̃ = τ2φ

∗τ2. Finally,
θi denote the θ terms for each of the different gauge groups, where X̃µν = 1

2ε
αβµνXαβ with

εµναβ the completely asymmetric tensor and ε0123 = +1. The first three lines give the
kinetic terms of the fermions, the gauge fields, and the scalars, respectively. The fourth line
gives the interactions of the fermions with the scalars. The last line describes the various θ
terms.

The couplings YL,R are symmetric 3× 3 matrices which give rise to Majorana masses
for the neutrinos, while the Γ(l) and Γ̃(l) matrices are general 3× 3 matrices which provide
the Dirac masses of the fermions. We work in the basis where the eL,R and uL,R fields
correspond to their mass eigenstates. The dL,R fields that reside in the quark doublets are
then related to their mass eigenstates by dL,R = VL,Rd

mass
L,R , where VL,R are the left- and

right-handed CKM matrices.
Finally, the covariant derivative is given by,

Dµ = ∂µ − igsGaµta − igLT ILW I
Lµ − igRT IRW I

Rµ − i
gB−L

2 (B − L)Bµ , (2.4)

where ta and T IL,R are the generators of SU(3)c and SU(2)L,R in the representation of the
field that Dµ works on.

Together with the Higgs potential, V (φ,∆L,R) (see e.g. ref. [54] for a detailed analysis),
Eq. (2.3) specifies the complete model. However, since we will be integrating out the heavy
new fields, we will need the Lagrangian in the broken phase, which requires the vacuum
expectation values of the scalar fields.

2.2 Symmetry breaking

The breaking of the LR gauge group is realized by the vacuum expectation values (vevs) of
the scalar fields

〈φ〉 =
√

1/2
(
κ 0
0 κ′eiα

)
, 〈∆L〉 =

√
1/2

(
0 0

vLe
iθL 0

)
, 〈∆R〉 =

√
1/2

(
0 0
vR 0

)
, (2.5)

where all parameters are real after gauge transformations have been used to eliminate two
of the possible phases [6]. The necessary conditions to obtain a symmetry-breaking pattern
of this form have been discussed in refs. [55–58].
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We will assume that the SU(3)c × SU(2)L × SU(2)R × U(1)B−L gauge group is broken
down to SU(3)c×U(1)QED in two steps. In the first step the vev of the right-handed triplet,
vR, breaks the SU(2)L × SU(2)R ×U(1)B−L gauge group down to SU(2)L ×U(1)Y . This
vev defines the high scale of the model, and gives the main contribution to the masses of
the heavy fields: the right-handed gauge bosons, the right-handed neutrinos, and the heavy
Higgs fields. At the electroweak scale the vevs of the bidoublet, κ and κ′eiα, then break
SU(2)L×U(1)Y to U(1)QED, and are of the order of the EW scale,

√
κ2 + κ′ 2 = v ' 246GeV.

Finally, vL contributes to the masses of the light neutrinos through the second to last term
in eq. (2.3) and one would therefore expect that vL . O(1 eV).

The hierarchy between the different vevs allows us to describe the effects of the new
heavy particles in an effective field theory in which the heavy fields are integrated out. This
has the advantage of simplifying loop calculations and allows one to resum large logarithms.
We will therefore integrate out the heavy BSM particles after the first step of symmetry
breaking, i.e. after the right-handed triplet obtains its vev. We will work in the phase where
the SM gauge group remains unbroken and match onto operators that are invariant under
SU(2)L ×U(1)Y .

Before discussing this matching procedure we briefly describe the two possible discrete
symmetries between left- and right-handed fields that can be implemented in LR models as
well as the constraints they place on the model parameters.

2.3 Left-right symmetries

One of the motivations for LR models is the possibility of having a symmetry between left-
and right-handed particles at high energies. Here we discuss the two possible transformations
that relate left- and right-handed fields,

P :

QL ←→ QR , LL ←→ LR , φ←→ φ† , ∆L ←→ ∆R ,

τ ·W I
Lµ ←→ τ ·W I µ

R , taGaµ → taGaµ , Bµ → Bµ ,

C :

QL ←→ QcR , LL ←→ LcR , φ←→ φT , ∆L ←→ ∆∗R ,
τ ·WLµ ←→ (τ ·WRµ)∗ , taGaµ →

(
taGaµ

)∗
, Bµ → Bµ ,

(2.6)

where the first is related to parity and the second to charge conjugation [41].
If either of these two transformations leaves an LR model invariant we will refer to

it as left-right symmetric. Given our assumptions for the vevs of the scalar fields, such a
symmetry will be broken by the vev of the right-handed triplet, vR. Nevertheless, these
symmetries still provide useful constraints on the model parameters. For example, the C
and P symmetries require the SU(2)L,R gauge couplings to be equal, gL = gR, at the LR
scale and they restrict the number of parameters that appear in the Higgs potential. In
addition, they imply several relations between the couplings of the fermions to the scalars
and, in the P -symmetric case, set the θi terms to zero. This is summarized by

P : Γ = Γ† , Γ̃ = Γ̃† , YL = YR , θ = θi = 0 ,
C : Γ = ΓT , Γ̃ = Γ̃T , YL = Y †R . (2.7)

– 5 –
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For our purposes, the most important consequence of the above relations is their impact on
the quark mass matrices, which can be written as

Mu =
√

1/2κ(Γ + ξe−iαΓ̃) , Md =
√

1/2κ(ξeiαΓ + Γ̃) , (2.8)

where ξ ≡ κ′/κ. Given our choice of basis the up-type mass matrix is already diagonal, Mu =
diag(mu,mc,mt), while the down-type mass matrix satisfies V †LMdVR = diag(md,ms,mb).
From eqs. (2.7) and (2.8) one can see that the mass matrices become symmetric in the
C-symmetric case, while the P -symmetric matrices are hermitian in the limit ξ sinα→ 0.

In both cases these restrictions are enough to relate the right-handed CKM matrix to
the left-handed one. In the C-symmetric case there is the simple relation [59]

C : VR = KuV
∗
LKd , (2.9)

where Ku = diag(eiθu , eiθc , eiθt) and Kd = diag(eiθd , eiθs , eiθb) are diagonal matrices of
phases, of which one combination can be set to zero, while the rest remains unconstrained.
As a result, the mixing angles in both matrices will be equal.

The P -symmetric case is somewhat more involved. Here the right-handed CKM matrix
takes a simple form only in the limit where ξ sinα→ 0

P : VR = SuVLSd , (ξ sinα = 0) , (2.10)

where Su,d are diagonal matrices of signs, one combination of which is unphysical, such
that there are 32 solutions. In the general P -symmetric case, the above relation is only
approximately satisfied and acquires corrections ∼ ξ sinα. These corrections can appear
with ratios of the quark masses and so they are expected to be small as long as ξ sinα�
mb/mt [60]. The solution for VR has been derived in refs. [60, 61] and expresses VR in
terms of the quark masses, VL, and ξ sinα. This implies that, although there are 32
different solutions, VR does not introduce any additional model parameters in this case.
The approximate expressions we use in this work are described in appendix A.

Although both the P - and C-symmetric cases are phenomenologically viable, due to
the more constrained and predictive nature of right-handed CKM matrix, we will focus on
the scenario with a P symmetry in what follows.

2.4 Strong CP problem and P symmetry

In the case of a P symmetry the QCD θ term is explicitly forbidden, see eq. (2.7), and at
scales where the parity symmetry is unbroken, we have θ = 0. However, after EWSB and
the breaking of parity, the quark mass matrices generally obtain a phase which contributes
to the physical combination θ̄ ≡ θ + Arg DetMuMd = Arg DetV †R. This contribution is
calculable [40] and to good approximation given by

θ̄ ' mt

2mb
sinα tan 2β , tan 2β = 2ξ

1− ξ2 . (2.11)

As the θ̄ term is a marginal operator, this source of CP violation is not suppressed by any
ratio of scales. Using the current neutron EDM limit, dn < 1.8 · 10−26 e cm [62] and the

– 6 –
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lattice-QCD result dn = −(1.5±0.7) ·10−16 θ̄ e cm [63], gives |θ̄| < 1.2 ·10−10. In the absence
of another mechanism to account for the QCD θ̄ term (for instance through a Peccei-Quinn
mechanism or by allowing for explicit parity violation in the mLRSM Lagrangian), this
limit implies that

sinα tan 2β < 5.8 · 10−12 , (2.12)

which effectively forces sinα = 0, for practical purposes. Thus, the strong CP problem
in the Standard Model, i.e. the smallness of θ̄ < 10−10, is transferred in the P -symmetric
mLRSM to the requirement of setting sinα tan 2β < 5.8 · 10−12 by hand. Of course, in both
the SM and the mLRSM these are not really problems in the sense of inconsistencies. In
fact, in both models these small parameters are technically natural implying that, once
chosen small, there are no large radiative corrections that renormalize the parameters. It
has been argued that the strong CP problem is therefore not a problem, see e.g. ref. [64].

Nevertheless, there is something uneasy about these small numbers. Why does nature
prefer absence of CP violation in the strong sector? There seem to be no anthropic
arguments that motivate a small θ̄ [65, 66]. A popular way to dynamically remove the θ̄
term is through the Peccei-Quinn mechanism that leads to a new field, the axion, which
can potentially be linked to Dark Matter. Of course, the Peccei-Quinn mechanism is an
ad hoc addition to the mLRSM and it can be argued that it is less minimal than simply
setting certain phases to be small by hand (ref. [67] discusses how infrared and ultraviolet
solutions can be separated using EDM experiments).

In this work, we do not wish to choose between these two approaches and therefore
perform two analyses. In the first, we describe the EDM phenomenology in the mLRSM
in presence of a Peccei-Quinn mechanism. In this case, EDMs are induced by flavor-
conserving dimension-six operators and an interesting pattern of CP-violating observables
appears. We will see that the Peccei-Quinn mechanism releases us from the requirement
that sinα tan 2β must be very small. This allows for a relatively light MWR

as potentially
dangerous contributions to kaonic CP violation due to the CKM phase can be cancelled
against contributions proportional to sinα. In this case, we find a stringent lower bound
on MWR

of order of a few TeV. These conclusions agree qualitatively with refs. [39, 40].
In general the PQ mechanism in presence of additional sources of CP violation (beyond
the θ̄ term) leads to CP-violating axion interactions with hadrons that can be limited
by astrophysical constraints or searched for in dedicated experiments [68–71]. We do not
specify the PQ mechanism and do not consider these couplings here.

We also study the pure mLRSM with P symmetry where no PQ mechanism is present.
As this version of the mLRSM is more constrained, due to eq. (2.12), it leads to significantly
stronger limits on the mass of right-handed gauge bosons.

3 Matching and renormalization group equations

In this section we integrate out the heavy fields and match onto gauge invariant operators
in the SMEFT [72]. In order to do so, we assume that the right-handed scalar triplet has
obtained a vev, thereby breaking SU(2)R, while SU(2)L ×U(1)Y remains unbroken. At this
stage there are several relevant heavy fields with masses O(vR):
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Gauge bosons. The breaking of SU(2)R leads to a charged and a neutral gauge boson,
W±R and ZR, with O(vR) masses, which arise from the W I

R and B fields. The remaining
linear combinations of the gauge fields make up the SM SU(2)L and hypercharge fields.
The heavy charged bosons can be written as

W±Rµ =
W 1
Rµ ∓ iW 2

Rµ√
2

, M2
WR

= 1
2g

2
Rv

2
R . (3.1)

The neutral W 3
R and B bosons mix and can be written in terms of mass eigenstates(

W 3
Rµ

Bµ

)
=
(
cR sR
−sR cR

)(
ZRµ
Bµ

)
, sR = gB−L√

g2
B−L + g2

R

, cR = gR√
g2
B−L + g2

R

,

M2
B = 0 , M2

ZR
= v2

R(g2
B−L + g2

R) , (3.2)

where Bµ is the hypercharge field of the SM. This field then couples to hypercharge,
Y = Q − T 3

L = B−L
2 + T 3

R, with gauge coupling g′ = sRgR = cRgB−L. The W I
L fields

stay massless as well implying that, after integrating out the heavy gauge fields, the
covariant derivative reduces to that of the SM, Dµ = ∂µ − igsGaµta − igLT ILW I

Lµ − ig′Y Bµ,
where g = gL = gR.

Scalar SU(2)L doublet. After ∆R acquires a vev, the bi-doublet φ can be written in
terms of two SU(2)L doublets, φ = (φ1, φ2), of which one linear combination obtains an
O(vR) mass. The relation to the mass eigenstates is2

(
φ̃1
φ2

)
=
(
−cβ sβe

−iα

sβe
iα cβ

)(
ϕ

ϕH

)
, M2

ϕ = 0 , M2
H = α3v

2
R

2
1 + ξ2

1− ξ2 , (3.3)

where the mixing angles are given by sβ = sin β, cβ = cosβ, and tβ = tan β = ξ, while
ϕH is the heavy doublet, ϕ is the SM Higgs doublet, and α3 is a parameter in the Higgs
potential, in the notation of ref. [54].

In addition to the heavy states mentioned above, the right-handed neutrinos obtain
an O(vR) Majorana mass while the right-handed triplet, ∆R, gives rise to a heavy doubly-
charged and a heavy neutral scalar, δ++

R and Re δ0
R, respectively.3 However, since these

fields mainly couple to the leptons and scalar fields they have a limited effect on observables
that probe the couplings to quarks. We therefore do not pursue the effects of the νR, δ++

R ,
and Re δ0

R fields, and focus on the matching conditions that arise from integrating out the
W±R , ZR, and ϕH fields.

2The appearance of the vevs of the bi-doublet through ξ = sβ/cβ in eq. (3.3) might be somewhat
surprising as we are working in the unbroken phase of SU(2)L and φ has not acquired a vev yet. In principle,
Eq. (3.3) can be written in terms of the parameters in the Higgs potential and vR alone. However, the
parameters of the Higgs potential can be eliminated in favor of ξ by use of the minimum equations, see
appendix B for details.

3The remaining components of ∆R, namely δ+
R and Im δ0

R, are the would-be-Goldstone bosons that are
eaten by the W±R and ZR fields, see appendix B for more details.
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3.1 Matching conditions at µ = MWR

To obtain the matching conditions, we integrate out the heavy fields and work up to
dimension six in the EFT, i.e. we keep terms that are suppressed by up to two powers of the
high scale. All the heavy fields are integrated out at a common scale which we take to be
µ = MWR

. Since SU(2)R is explicitly broken at this stage, we now move to the mass basis for
the right-handed down-type quarks. This is achieved by a rotation of the right-handed down-
type quarks, dR → VRdR. The relevant interactions that receive matching contributions are
a right-handed charged current, CHud, as well as several four-quark operators4

L =
(
CijHudϕ̃

†iDµϕ ū
iγµdj + h.c.

)
− Cij lm1RR d̄

iγµuj ūlγµd
m − Cij lm2RR d̄

i
αγ

µujβ ū
l
βγµd

m
α

+ Cij lm1,qd q̄iγµqj d̄lγµd
m + Cij lm2,qd q̄iαγ

µqjβ d̄
l
βγµd

m
α

+ Cij lm1,qu q̄iγµqj ūlγµu
m + Cij lm2,qu q̄iαγ

µqjβ ū
l
βγµu

m
α

+
(
Cij lm1,quqd ε

abq̄iau
j q̄lbd

m + Cij lm2,quqd ε
abq̄iaαu

j
β q̄

l
bβd

m
α + h.c.

)
, (3.4)

where q = (uL, dL)T denotes the doublet of left-handed fields, d = dR and u = uR denote
right-handed fields for up- and down-type quarks, i, . . . ,m are flavor indices, and α and β
are color indices. The Wilson coefficients at the scale µ = MWR

are given by

CijHud = g2
R

M2
WR

ξeiα

1 + ξ2VR, ij ,

Cij lm1RR = g2
R

2M2
WR

V ∗R, jiVR, lm , Cij lm2RR = 0 ,

Cij lm1,qu = 0 , Cij lm2,qu = −1
2Y

im
uH (Y ∗uH)jl

 1
M2
H

+ g2
R

32π2M2
WR

(
1− ξ2

1 + ξ2

)2(
ln M2

H

M2
WR

− 1
) ,

Cij lm1,qd = 0 , Cij lm2,qd = −1
2Y

im
dH (Y ∗dH)jl

 1
M2
H

+ g2
R

32π2M2
WR

(
1− ξ2

1 + ξ2

)2(
ln M2

H

M2
WR

− 1
) ,

Cij lm1,quqd = 1
M2
H

Y ij
uHY

lm
dH , Cij, lm2,quqd = 0 , (3.5)

where YuH,dH are the Yukawa couplings of ϕH ,

YuH =
√

2
v

Md(1 + ξ2)− 2ξeiαMu

1− ξ2 , YdH =
√

2
v

Mu(1 + ξ2)− 2ξe−iαMd

1− ξ2 VR . (3.6)

The Cqd,qu Wilson coefficients are important as they mediate ∆F = 2 processes
at low energies. They are generated by tree-level ϕH exchange, and, at scales below
µ = MWR

, by loop diagrams induced by WR interactions. Both types of contributions
are phenomenologically relevant, as MH tends to be heavier than MWR

. For this reason
we work at tree-level for the contributions ∼M−2

H , while keeping loop-level contributions
4We have chosen a basis of dimension-six operators that is most convenient for our calculations. The

comparison to the standard Warsaw basis is given in appendix C.
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proportional to (4π)−2M−2
WR

. In particular, we include corrections to Cqu,qd in eq. (3.5)
scaling as (4πMWR

)−2 that arise from self-energy graphs for ϕH ,5 while dropping loop
diagrams involving ϕH that scale ∼ (4πMH)−2. The same approximation is used for
MH in the above expressions, were we include loop contributions due to WR interactions
that are enhanced by factors of (MH/MWR

)2. This implies that MH corresponds to the
one-loop expression for the physical Higgs mass up-to-and-including potentially large ∼
(M4

H)/(4πMWR
)2 terms, but misses loop contributions without the M2

H/M
2
WR

enhancement,
M2
H = M2

H, phys
[
1 +O

(
(4π)−2)].

For the loop contributions to ∆F = 2 operators from diagrams involving WL and
WR bosons, we find that they are cancelled by those in the EFT when performing the
matching at µ = MWR

. The finite parts of this result in principle depend on the scheme
and the treatment of evanescent operators, which appear for the four-fermion interactions
and impact the way Dirac structures are reduced to our basis of operators.6 We employ
MS throughout our calculations, however, for the evanescent terms, we adopt a scheme in
which their contributions are compensated by local counterterms [76–78]. In particular, in
the evaluation of box diagrams we use the relation γµγνPL⊗ γνγµPR = dPL⊗PR−E(2)

LR to
reduce the Dirac structures we encounter, where E(2)

LR is the evanescent operator that defines
our scheme. We subsequently use the following Fierz identity, (ψ̄1γµPLψ2)(ψ̄3γ

µPRψ4) =
−2(ψ̄1PRψ4)(ψ̄3PLψ2) − E

(F1)
LR to further reduce the loop contributions to our basis of

operators. This scheme is equivalent to that of ref. [79], with aev = −1/2.
When evolving the Lagrangian in eq. (3.4) from MWR

to the electroweak scale, the
dipole operators are induced by the C1,2 quqd coefficients. These dipole interactions can be
written in an SU(2)L-invariant form as follows

Ldip = − g′√
2
q̄σµνBµνΓuBu ϕ̃−

g′√
2
q̄σµνBµνΓdBdϕ

− g√
2
q̄σµνW I

L, µντ
IΓuWu ϕ̃−

g√
2
q̄σµνW I

L, µντ
IΓdWdϕ

− gs√
2
q̄σµνGaµνt

aΓugu ϕ̃−
gs√

2
q̄σµνGaµνt

aΓdgdϕ+ h.c. , (3.7)

at low energies, the off-diagonal components of these interactions significantly contribute
to ∆F = 1 observables, while the diagonal components give rise to EDMs. It is useful to
define the following combinations of the Γu,dW,B,g couplings,

Qumuj

v
Cijγu = − (ΓuB + ΓuW )ij ,

Qdmdj

v
Cijγd = −

(
V †LΓdB − V

†
LΓdW

)ij
,

muj

v
Cijgu =

(
Γug
)ij

,
mdj

v
Cijgd =

(
V †LΓdg

)ij
, (3.8)

where Qu and Qd are the electric charges of the quarks and Cγd, γu are the combinations
that will give rise to the electromagnetic dipole moments of the quarks after electroweak

5As discussed in refs. [73–75], only the combination of these diagrams with box diagrams involving WL

and WR bosons gives a gauge-invariant result.
6This scheme dependence in the matching is removed when computing physical matrix elements in

the EFT.
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symmetry breaking, while Cgd, gu are the gluonic dipole moments. We introduced a CKM
factor in the couplings for the down-type operators in anticipation of a later rotation to the
mass basis.

3.2 Renormalization group equations below MWR

The evolution of the effective Lagrangian from µ = MWR
to the electroweak scale requires

the renormalization group equations (RGEs). For the four-quark operators these take the
form [80, 81]

d

d lnµ
~Cijlm =


αs
4πγRR 0 0 0
1

(4π)2 γ
D
EW

αs
4πγLR 0 0

1
(4π)2 γ

U
EW 0 αs

4πγLR 0
0 0 0 αs

4πγLRLR


ijlm

abcd

· ~Cabcd , (3.9)

where ~CT = (C1RR, C2RR, C1,qd, C2,qd, C1,qu, C2,qu, C1,quqd, C2,quqd). The diagonal terms
describe one-loop QCD corrections. The γRR and γLR terms are diagonal in generation
indices

γRR = δaiδbjδclδdm

(
−6/Nc 6

6 −6/Nc

)
, γLR = δaiδbjδclδdm

(
6/Nc 0
−6 −6N

2
c−1
Nc

)
, (3.10)

where Nc = 3 is the number of colors. For the operators with (L̄R)(L̄R) chiralities the
anomalous dimensions are

γLRLR =
(

2/Nc − 6Nc −4
4 2/Nc + 2Nc

)
δaiδbjδclδdm +

(
−8 8/Nc − 4Nc

8/Nc −4

)
δciδbjδalδdm .

(3.11)
The operators, Ci RR, contribute to Ci qd through electroweak loops captured by γU,DEW

γDEW = 2
v2 δalδdm(M †u)bj(Mu)ic

(
0 1
1 0

)
, γUEW = 2

v2 δclδbm(V †RM
†
d)dj(MdVR)ia

(
0 1
1 0

)
.

The dipole operators are induced through the following RGEs [82–84]

d

d lnµ(Cijγu, Cijgu)T = αs
4πγdip ·

(
Cijγu
Cijgu

)
+ 1

(4π)2

∑
k∈d,s,b

(V †RM
†
d)lk

muj

γuquqd ·
(
Ckjil1 quqd
Ckjik2 quqd

)
,

d

d lnµ(Cijγd, C
ij
gd)

T = αs
4πγdip ·

(
Cijγd
Cijgd

)
+ 1

(4π)2

∑
k∈u,c

muk

mdj

γdquqd ·
(
VL, ilC

lkkj
1 quqd

VL, ilC
lkkj
2 quqd

)
, (3.12)

where

γdip =
(

8CF −8CF
0 16CF − 4Nc

)
, γdquqd =

(
2QuQd 2Nc

Qu
Qd

−2 −4CF

)
, (3.13)

where CF = N2
c−1

2Nc and γuquqd can be obtained from γdquqd by Qu ↔ Qd.
Finally, the CHud operator does not evolve under QCD.
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3.3 Matching at µ = mW

After evolving the effective operators in eq. (3.4) to the electroweak scale we integrate out
the top quark as well as the Higgs, W , and Z bosons. Because SU(2)L has now been broken,
we move to the mass basis of the left-handed down-type quarks. This can be achieved by
the following flavor rotation, dL → VLdL, so that the left-handed quark doublet becomes,
q = (uL, VLdL)T . The relevant four-fermion operators below the electroweak scale can be
written as

L = −Cij lm1LL d̄
i
Lγ

µujL ū
l
Lγµd

m
L − C

ij lm
2LL d̄

i
Lαγ

µujL β ū
l
L βγµd

m
Lα

−
(
Cij lm1LR d̄

i
Lγ

µujL ū
l
Rγµd

m
R + Cij lm2LR d̄

i
Lαγ

µujL β ū
l
R βγµd

m
Rα + h.c.

)
− Cij lm1RR d̄

i
Rγ

µujR ū
l
Rγµd

m
R − C

ij lm
2RR d̄

i
Rαγ

µujR β ū
l
R βγµd

m
Rα

+ Cij lm4 d̄iLγ
µdjL d̄

l
Rγ

µdmR + Cij lm5 d̄iLαγ
µdjL β d̄

l
R βγ

µdmRα

+
(
Cij lm1,quqd ε

abq̄iau
j
R q̄

l
bd
m
R + Cij lm2,quqd ε

abq̄iaαu
j
R β q̄

l
bβd

m
Rα + h.c.

)
+ CG̃

gs
6 fabcε

αβµνGaαβG
b
µρG

c ρ
ν . (3.14)

Most of the above operators have a similar form to the SU(2)L-invariant ones in eq. (3.4),
apart from those in the first, second, and last lines. Those in the first two lines are additional
four-quark operators, generated by the SM and CHud, while the last line describes the
so-called Weinberg operator, which is induced through one-loop diagrams.

The dipole operators take the following form below the electroweak scale

Ldip = −eQu2
∑

i,j∈u,c
mujC

ij
γuq̄

i
Lσ

µνFµνq
j
R −

eQd
2

∑
i,j∈d,s,b

mdjC
ij
γdq̄

i
Lσ

µνFµνq
j
R

− gs
2

∑
i,j∈u,c

mujC
ij
guq̄

i
Lσ

µνGaµνt
aqjR −

gs
2

∑
i,j∈d,s,b

mdjC
ij
gdq̄

i
Lσ

µνGaµνt
aqjR + h.c. (3.15)

The tree-level matching leads to

Cijlm1LL = 2
√

2GF
(
V †L

)ij
(VL)lm , C2LL = 0 ,

Cijlm1LR =
(
V †L

)ij
(CHud)lm , C2LR = 0 , (3.16)

while the coefficients of the remaining four-quark operators, Ci RR and Ci quqd, are unaffected
at the WL threshold. C4 and C5 get a tree-level contribution from Cqd, as well as a
contribution from loop diagrams involving Cij lm1,2RR and WL exchange

Cij lm4 (mW ) = V ∗LaiVL bjC
ab lm
1,qd (mW )

+ g2
L

4(4π)2 C
lt tm
2RRV

∗
L tiVL tjxt

(
lnm2

W /µ
2 + 3

1− xt
+ (4 + (xt − 2)xt) ln xt

(1− xt)2

)
+ g2

L

4(4π)2

(
C lc tm2RRV

∗
L tiVLcj + C lt cm2RRV

∗
LciVL tj

)
×
√
xcxt

(
lnm2

W /µ
2 − 1

)
(xt − 1) + (xt − 4) ln xt
xt − 1

+ g2
L

4(4π)2 C
lc cm
2RRV

∗
LciVLcjxc

(
1− 3 lnm2

W /µ
2
)
, (3.17)
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where xi = m2
i /m

2
W . The first, second and third contributions result from diagrams involving

an internal t− t, t− c, and c− c pair, respectively, and we dealt with the appearance of
evanescent operators as described above eq. (3.7). A similar equation holds for C5, with
the replacements, C2RR → C1RR and C1 qd → C2 qd.

Finally, one-loop contributions to the Weinberg operator [85, 86] and dipole moments [87]
appear

Cijγu(m−W ) = Cijγu(m+
W ) + 2

(4π)2

∑
k=d,s,b

mdk

mujQu
V ik
L C∗ jkHud ,

Cijgu(m−W ) = Cijgu(m+
W ) ,

Cijγd(m
−
W ) = Cijγd(m

+
W ) + 2

(4π)2

∑
k=u,c

muk

mdjQd
V ∗ kiL CkjHud

+ 1
(4π)2

mt

mdjQd
V ∗ tiL CtjHud [QufW (xt) + gW (xt)] ,

Cijgd(m
−
W ) = Cijgd(m

+
W )− 1

(4π)2
mt

mdj

V ∗ tiL CtjHudfW (xt) ,

CG̃(m−W ) = CG̃(m+
W )− αs

8π ImC(tt)
gu , (3.18)

where xt = m2
t /m

2
W and

fW (x) = x3 + 3x− 4− 6x ln x
2(x− 1)3 , gW (x) = 4 + x(x− 11)

2(x− 1)2 + 3 x2 ln x
(x− 1)3 . (3.19)

3.4 Renormalization group equations below µ = mW

Below µ = mW , the QCD running for the relevant four-quark operators is equivalent to the
running above the electroweak scale; the C1LL and C2LL coefficients follow the same RGEs
as C1RR and C2RR, while the RGEs of C1LR and C2LR (and C4 and C5) correspond to
those of C1 qd and C2 qd. The running of C1,2quqd and C1,2RR is unchanged below µ = mW .

Instead, the mixing of the Ci RR operators with C4,5 operators changes from eq. (3.9) to

dCabcd4
d lnµ = 1

4π2muimuj

[
Caijb1LLC

cjid
2RR + Caijb2LLC

cjid
1RR +NcC

aijb
2LLC

cjid
2RR

]
,

dCabcd5
d lnµ = 1

4π2muimujC
aijb
1LLC

cjid
1RR . (3.20)

The RGEs for the flavor-diagonal dipole operators must be extended to include the
Weinberg operator. The QCD part of the RGEs becomes

d

d lnµ
~Cdip = αs

4πγ
′
dip ~Cdip , (3.21)

with ~Cdip = (ImC
(qq)
γq , ImC

(qq)
gq , CG̃)T , and [85, 88, 89]

γ′dip =

8CF −8CF 0
0 16CF − 4Nc 2Nc

0 0 Nc + 2nf + β0

 , (3.22)
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where β0 = (11Nc − 2nf )/3, with nf the number of active flavors. The C1,2LR coefficients
also contribute to dipole operators, which is captured by

d

d lnµ(Cijγu, Cijgu)T = αs
4π

∑
k∈d,s,b

mdk

muj

γuLR ·
(
Cjkik1LR
Cjkik2LR

)∗
+ . . . ,

d

d lnµ(Cijγd, C
ij
gd)

T = αs
4π

∑
k∈u,c

muk

mdj

γdLR ·
(
Ckjki1LR
Ckjki2LR

)
+ . . . , (3.23)

where the dots stand for the additional terms on the right-hand side of eq. (3.12), and [87]

γdLR = 1
(4π)2

(
32QuQd + 64

3 160QuQd
−16

3 8

)
. (3.24)

γuLR can be obtained from γdLR by Qu ↔ Qd.

3.5 Matching contributions below µ = mW

Below the electroweak scale we integrate out the bottom and charm quarks at the respective
mass scales. At the bottom threshold this gives rise to matching contributions to the
Weinberg operator and the dipole moments of the up-type quarks

Cijγu(m−b ) = Cijγu(m+
b ) + 1

8π2
Qdmb

Qumuj

[
Cbijb1LR +NcC

bijb
2LR

]∗
,

Cijgu(m−b ) = Cijgu(m+
b )− 1

8π2
mb

muj

[
Cbijb1LR

]∗
,

CG̃(m−b ) = CG̃(m+
b )− αs

8π ImC
(bb)
gd . (3.25)

Similarly, at the charm threshold we obtain the following contributions

Cijγd(m
−
c ) = Cijγd(m

+
c ) + 1

8π2
Qumc

Qdmdj

[
Ciccj1LR +NcC

iccj
2LR

]
,

Cijgd(m
−
c ) = Cijgd(m

+
c )− 1

8π2
mc

mdj

Ciccj1LR ,

CG̃(m−c ) = CG̃(m+
c )− αs

8π ImC(cc)
gu . (3.26)

Finally, at µ = mc we find the following matching contributions to the C4,5 coefficients

Cijlm4 (mc) = C4(m+
c ) + m2

c

(4π)2

(
1 + 2 lnm2

W /µ
2 + 2 ln xc

)
×
[
Ciccj1LLC

lccm
2RR + Ciccj2LLC

lccm
1RR +NcC

iccj
2LLC

lccm
2RR

]
,

Cijlm5 (mc) = C5(m+
c ) + m2

c

(4π)2

(
1 + 2 lnm2

W /µ
2 + 2 ln xc

)
Ciccj1LLC

lccm
1RR . (3.27)

At low energies the C4,5 coefficients mediate ∆F = 2 processes. Working at fixed, one-loop
order and collecting the matching contributions at µ = MH ,MWR

,mW and mc, as well
as the electroweak running contributions in between these thresholds, we reproduce the
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expressions in ref. [22], up to terms ∼ O( 1
(4π)2M2

H
) that we neglect as explained below

eq. (3.6).
In our analysis we include QCD corrections by solving the RGEs of the four-quark

operators thereby evolving their Wilson coefficients from one threshold to the next. Formally,
our approach is then accurate up to leading-log precision. I.e. it takes into account terms of
order 1

(4π)2 ln×
(
αs
4π
)n lnn, but does not include all of those at order 1

(4π)2 ln×
(
αs
4π
)n lnn−1.

Some of these terms are included in our matching equations, e.g. through the non-log terms
in eqs. (3.17) and (3.27), but we neglected contributions at the same order that would
arise from two-loop matching at the different thresholds. In the same way we include the
leading-log contributions to the dipole operators, Cγq and Cgq.

This strategy is similar to the one followed in refs. [22, 41] for the contributions to C4,5
mediated by t− t graphs, but differs somewhat for those with intermediate c− t or c− c
quarks. For the latter, ref. [22] employed the approach outlined in refs. [75, 90], which is
not guaranteed to reproduce a leading-log approximation. We discuss the impact of these
differences when considering ∆F = 2 observables in section 5.3.

3.6 Summary

Using the matching conditions in sections 3.1, 3.3 and 3.5, and the RGEs in sections 3.2
and 3.4, we can finally give approximate expressions for the LEFT coefficients at the scales
relevant to low-energy observables. Assuming the initial scale µ0 is µ0 = 10TeV, we obtain
the following numerical values for the charged-current four-quark operators at µlow = 2GeV,

v2

2 C
ijkl
1LL(µlow) = 1.15V ∗L jiVLkl,

v2

2 C
ijkl
2LL(µlow) = −0.34V ∗L jiVLkl,

v2
R

2 Cijkl1LR(µlow) = 0.90 ξeiα

1 + ξ2V
∗
L ji(VR)kl,

v2
R

2 Cijkl2LR(µlow) = 0.45 ξeiα

1 + ξ2V
∗
L ji(VR)kl,

v2
RC

ijkl
1RR(µlow) = 1.36 (VR)∗ji (VR)kl , v2

RC
ijkl
2RR(µlow) = −0.65 (VR)∗ji (VR)kl , (3.28)

while, for the scalar operators,

Cijkl1, quqd(µlow) = 4.9Y
kl
dHY

ij
uH

M2
H

+ 2.6Y
il
dHY

kj
uH

M2
H

,

Cijkl2 quqd(µlow) = −0.95Y
kl
dHY

ij
uH

M2
H

− 0.82Y
il
dHY

kj
uH

M2
H

. (3.29)

The operators C4 and C5, which contribute to meson-antimeson oscillations, receive a
tree level contribution from the exchange of heavy Higgses, and a loop contribution from
diagrams with a WR and WL exchange. At µlow = 2GeV, we find

Cijkl4 (µlow) = g2
R

M2
WR

∑
a,b

a
(4)
ab

muamub

m2
t

V ∗LaiVL bj (VR)∗bk (VR)al , (3.30)

Cijkl5 (µlow) = −2.01 1
M2
H

(YdH)∗jk Y
il
dH + g2

R

M2
WR

∑
a,b

a
(5)
ab

muamub

m2
t

V ∗LaiVL bj (VR)∗bk (VR)al ,
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with YuH and YdH defined in eq. (3.6) and evaluated at µ = µ0. The RG effects are captured
by the a(4,5) coefficients, which are given by

a(4) =

0.028 0.028 0.001
0.028 0.032 0.001
0.001 0.001 0.00077

 , a(5) = −

 0.16 0.16 0.034
0.16 0.17 0.037
0.034 0.037 0.030

 . (3.31)

These results depend mildly on the scale Λ, and in our analysis we set µ0 = MWR
. If

we turn off the running between MWR
and mt and integrate out the WR and heavy Higgses

at the scale µ0 = mt, the values of C1RR and C2RR are reduced (in absolute value) by
about 15% and 40%, respectively, while Ci LL and Ci LR are not affected. Similarly, the
prefactors of the product of Yukawa couplings Y kl

dHY
ij
uH |µ=10 TeV and Y il

dHY
kj
uH |µ=10 TeV in

C1 quqd decrease by ∼ 10% and ∼ 30%, respectively, while they decrease by ∼ 30% for both
terms in C2 quqd. These fairly mild corrections due to the RGEs are in part due to the µ0
dependence of the Yukawa couplings, YqH , which partially compensate for the effects of the
γLR anomalous dimensions. Finally, using µ0 = mt, the upper-left 2× 2 block of the a(4,5)

coefficients in eq. (3.31) decrease by ∼ 30%, while the remaining components decrease by
significant factors ranging from ∼ 1/5 to ∼ 1/40. We collect semi-analytical results for the
µ0 dependence of these Wilson coefficients in appendix E.

4 The CP-violating chiral Lagrangian

In this section we discuss the low-energy chiral Lagrangian induced by CP-violating operators
involving light quarks. The construction of this Lagrangian is relevant for the study of
electric dipole moments and long-distance effects in εK . Although the effects in EDMs
and εK of certain operators can be directly evaluated using lattice-QCD or QCD sum
rules, there are several operators for which it is useful to employ Chiral Perturbation
Theory (χPT). In particular, the contributions of the LR operators in eq. (3.14) to EDMs
have not been computed directly. In this case, chiral symmetry allows us to relate their
contributions to CP-odd pion-nucleon couplings to matrix elements that have been computed
for K → ππ processes. The obtained pion-nucleon couplings can be used to estimate the
leading contributions of these operators to diamagnetic atomic EDMs. In addition, deriving
the mesonic Lagrangian in χPT allows us to estimate long-distance corrections to K − K̄
mixing arising from two insertions of ∆S = 1 operators.

Our starting point is the following Lagrangian at the scale of a few GeV

L = LQCD
mq=0 − q̄Mq − θ̄ g2

s

64π2 ε
µναβGaµνG

a
αβ −

gs
2 q̄(iσ

µνγ5)d̃CEtaq Gaµν
− CAB1LR q̄γ

µtAPLq q̄γµt
BPRq − CAB2LR q̄αγ

µtAPLqβ q̄αγµt
BPRqβ

−
[
Csuud1LL s̄γ

µPLu ūγµPLd+ Csuud2LL s̄αγ
µPLuβ ūαγµPLdβ + (L↔ R) + h.c.

]
, (4.1)

where q denotes a vector of light quark fields q = (u, d, s)T , ta (tA,B) are the Gellman
matrices in color (flavor) space, normalized such that Tr(tatb) = δab/2, andM is the real
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quark mass matrix,M = diag(mu,md,ms). The couplings are given by

CABiLR = (δA1 − iδA2)(δB1 + iδB2)CduudiLR + (δA4 − iδA5)(δB4 + iδB5)Csuusi LR

+ (δA4 − iδA5)(δB1 + iδB2)CsuudiLR + (δA1 − iδA2)(δB4 + iδB5)Cduusi LR

− (δA6 − iδA7)(δB6 + iδB7)Csdds3+i + h.c. (4.2)

We work in a basis where the overall phase of the mass matrix has been rotated into the
G̃G term to form the physical combination θ̄. The third term in the first line of eq. (4.1)
denotes the CP-odd quark chromo-electric dipole moment with d̃CE = diag(d̃u, d̃d, d̃s),
where d̃u = mu ImCuugu and d̃i = mi ImCiigd for i = {d, s}. The last two lines denote
various CP-odd four-quark operators introduced in previous sections. To obtain the above
Lagrangian we have used the relation

(
Csd ds4,5

)∗
= Cds sd4,5 .

Our main goal will be to estimate the CP-odd pion-nucleon couplings that are induced by
the LR operators and to discuss the long-distance contributions to K̄ −K mixing generated
by two insertions of the ∆S = 1 four-fermion terms. Compared to the Lagrangians in
eqs. (3.14) and (3.15), we have omitted contributions from Cij lm1,quqd and Cij lm2,quqd as the
operators involving light quarks are suppressed by small Yukawa couplings and M−2

H , so
that their contributions can be safely neglected. We also omitted the Weinberg operator
and the quark EDMs here as we will use lattice QCD and QCD sum-rule calculations to
directly obtain their contributions to EDMs in section 5.4. Finally, eq. (3.14) involves
∆S = 1 interactions ∼ C4,5 with sddd, ddsd, dsss, and ssds flavor structures. Unlike the
CABiLR coefficients, which transform like 8L× 8R under chiral symmetry, the C4,5 coefficients
with ∆S = 1 have different chiral symmetry properties and we neglect them in the following
as these are only generated at loop level or are suppressed by factors of small Yukawa
couplings and M−2

H .

4.1 Vacuum alignment and the Peccei-Quinn mechanism

For the purpose of chiral perturbation theory it is useful to perform several field redefinitions
of the quark fields to remove meson tadpoles (tadpoles describe the disappearance of neutral
Goldstone bosons to the vacuum). We start by applying a global anomalous axial U(1)
transformation of the form

q → eiθAγ
5
q , θA = θ̄

2nf
, (4.3)

with nf = 3 the number of active quark flavors, to eliminate the gluonic G̃G term from the
Lagrangian. The price to pay is that the quark mass matrix becomes complex. In a first
step, we can ignore the shifts in the higher-dimensional qCEDMs and four-quark operators
as the induced terms scale as θ̄/Λ2, where Λ2 collectively denotes the masses of BSM fields
such as the right-handed scalar and/or gauge bosons. However, terms proportional to θ̄/Λ2

do play an important role when we discuss the Peccei-Quinn mechanism below. After the
rotation, the quark mass term becomes

Lm = −q̄Mq + q̄iγ5
[
−2

3(2m̄+ms) + (4εm̄)t3 −
4√
3

(m̄−ms)t8
]
θA q

≡ −q̄Mq + q̄iγ5 [θ0 + θ3t3 + θ8t8] q , (4.4)
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where we introduced m̄ = (mu +md)/2 and 2m̄ε = md−mu. The terms involving q̄iγ5t3,8q

lead to so-called tadpole operators that allow for neutral Goldstone bosons (in this case
π0 and η) to disappear in the vacuum. In the limit of no dimension-six interactions, it
is straightforward to eliminate the tadpole-inducing terms (a procedure called vacuum
alignment) by performing two additional non-anomalous axial SU(3) rotations

q → ei(α3t3+α8t8)γ5
q . (4.5)

By setting

α3 = εms

2ms + m̄(1− ε2) θ̄ , α8 = 1√
3
ms − m̄(1− ε2)
2ms + m̄(1− ε2) θ̄ , (4.6)

the q̄iγ5t3,8q terms are removed and the dimension-four part of the Lagrangian becomes

L = −q̄Mq −m∗θ̄q̄iγ5q , (4.7)

in terms of the reduced quark mass

m∗ =
( 1
mu

+ 1
md

+ 1
ms

)−1
= m̄(1− ε2)

2

(
1 + m̄(1− ε2)

2ms

)−1

. (4.8)

This is the usual result that shows that the theta term decouples if one of the quarks is
massless. Keeping terms to O(θ̄2) shows that the three chiral rotations proportional to θA,
α3, and α8 generate a term

LPQ = 1
6 θ̄

2m∗q̄q , (4.9)

which induces a hadronic contribution to the vacuum energy. The Peccei-Quinn mechanism
becomes apparent if we promote θ̄ to include a dynamical axion field7 θ̄ → θ̄ + a/fa where
a is the axion field and fa the axion decay constant. Because the vacuum energy scales as
(θ̄ + a/fa)2, the axion potential is minimized for 〈a〉 = −faθ̄ eliminating the CP-violating
term from the Lagrangian.

The story is similar, but somewhat more tedious to work out, in the presence of the
dimension-six operators. With just the dimension-four terms, the entire argument could be
made at the quark level with minimal reference to hadronic operators. Once the dimension-
six operators are included, it is convenient to refer to the hadronic Lagrangian explicitly.
It is useful to construct the terms in the chiral Lagrangian that can induce tadpoles after
the first field transformation that eliminates the gluonic θ̄ term. The relevant terms are
given by

LGB = F 2
0

4
(
Tr [U †χ+Uχ†]+Tr [U †χ̃+Uχ̃†]

)
+F 4

0
4 Tr

(
U †tBUtA

) ∑
i=1,2
AiLRCABiLR (4.10)

+F 4
0

4

∑
i=1,2

Tr
(
tA∂µU

†∂µU
)
A(8)
iLL

[
CduusiLL (δA6+iδA7)+h.c.

]
+
(
L→R

U↔U †

) ,

7The performed field redefinitions become field dependent and lead to derivative axion-quark interactions.
Since we do not consider axions explicitly in this paper, we do not further study these terms.
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where U is the matrix of the pseudo-Nambu-Goldstone (pNG) boson fields

U = u(π)2 = exp
(2iπ
F0

)
, π = 1√

2


π3√

2 + π8√
6 π+ K+

π− − π3√
2 + π8√

6 K0

K− K̄0 − 2√
6π8

 , (4.11)

and

χ = 2B [M+ i (θ0 + θ3t3 + θ8t8)] , χ̃ = −2iB̃
(
d̃0 + d̃3t3 + d̃8t8

)
, (4.12)

where we introduced the combinations d̃0 = (d̃u + d̃d + d̃s)/3, d̃3 = (d̃u − d̃d), and d̃8 =
(d̃u + d̃d− 2d̃s)/

√
3. Under SU(3)L×SU(3)R transformations we have U → RUL† such that

the quark-level Lagrangian and its chiral analogue are formally invariant if the spurions χ
and χ̃ transform in the same way as U . The LR four-quark operators transform as 8L× 8R,
so that the Ai LR part of the Lagrangian is invariant if the flavor structures transform as
tA → LtAL† and tB → RtBR†. For the LL and RR operators, we only take into account the
pieces transforming as 8L,R × 1R,L, as the long-distance contributions of the 27L,R × 1R,L
terms are suppressed by the ∆I = 1/2 rule.

The mesonic interactions are associated with 6 low-energy constants (LECs), B, B̃,
A{1,2}LR, and A{1,2}LL = A{1,2}RR. The first is well known and relates the masses of
pseudo-Goldstone bosons to the chiral condensate, while B̃ and A{1,2}LR are related to the
condensates of the higher-dimensional operators

B=−1
3
〈0|q̄q|0〉
F 2

0
, B̃=−1

3
〈0|q̄gsσµνGµνq|0〉

2F 2
0

. (4.13)

δAB
A1LR

8 =− 〈0|q̄αγ
µtAPLqα q̄βγµt

BPRqβ |0〉
F 4

0
, δAB

A2LR

8 =− 〈0|q̄αγ
µtAPLqβ q̄βγµt

BPRqα|0〉
F 4

0
.

whereas the condensates of the LL and RR operators vanish at leading order. The LEC
B can also be expressed as 2B = m2

π/m̄. Using the above Lagrangian, the LECs of the
four-quark operators can be determined from matrix elements of the form 〈(ππ)I=0,2|Oi|K0〉
which have been computed on the lattice [50, 91, 92]. Using chiral symmetry, the same LECs
can be related to matrix elements that play a role in neutrinoless double beta decay [93] or
to the bag factors appearing in K − K̄ oscillations [49], up to SU(3) corrections [94]. This
leads to the following relations at leading order8

A1LR(3 GeV) =
A′(8,8)

3
√

2F0
' 2.2(1) GeV2 , A2LR(3 GeV) =

A′(8,8)mix

3
√

2F0
' 10.1(6) GeV2 ,

A(8)
1LL(4 GeV) = A(8)

1RR(4 GeV) = − M2√
6F0(m2

K −m2
π)
' −2.8(3) ,

A(8)
2LL(4 GeV) = A(8)

2RR(4 GeV) = − M1√
6F0(m2

K −m2
π)
' 1.8(3) , (4.14)

8These relations assume that the 27L,R × 1R,L parts of the LL and RR operators provide negligible
contributions to the 〈(ππ)I=0|Oi|K0〉 matrix elements. These contributions can be obtained by using the
LEC of the 27L,R × 1R,L representations, A′(27,1), discussed in section 5.2. Such an estimate shows that the
dominant contributions toM1,2 indeed arise from the 8L,R × 1R,L parts of the operators.
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whereM1,2 and A′(8,8)(mix) are related to matrix elements ∼ 〈(ππ)I=0,2|Oi|K0〉, which were
determined in refs. [50, 91, 92].

The Lagrangian in eq. (4.10) leads to tadpoles as can be seen by expanding out
the various terms. Introducing the ratios r̃ = B̃/B and ri = (F 2

0 /B)Ai LR, the tadpole
Lagrangian becomes

Ltadpole = F0B

π0

θ3 − r̃ d̃3 + 1
2
∑
i=1,2

ri
(
2ImCduudiLR + ImCsu usi LR + ImCsd ds3+i

)
+ η

θ8 − r̃ d̃8 +
√

3
2

∑
i=1,2

ri
(
ImCsu usi LR − ImCsd ds3+i

)
− K̄0 +K0

√
2

1
2
∑
i=1,2

ri
(
ImCsu udiLR + ImCduusi LR

)

− i(K̄
0 −K0)√

2
1
2
∑
i=1,2

ri
(
ReCsu udiLR − ReCduusi LR

) . (4.15)

It is in principle possible to eliminate these leading tadpoles by a suitable redefinition of
Goldstone fields at the hadronic level. Such a rotation, however, requires a corresponding
complicated field redefinition of baryon fields, see refs. [95–97] for details. The baryon
transformation was omitted in ref. [98] and led to erroneous conclusions as was also pointed
out in ref. [39]. In this work, we follow ref. [31] and only perform field transformations
at the quark level. We reconstruct the chiral Lagrangian after each quark transformation.
This leads to the same conclusions as ref. [95] (and thus in disagreement with ref. [98] and
the ms/(mu +md) enhancement found there).

We begin by performing four axial chiral rotations on eq. (4.1), now including α6t6 and
α7t7 rotations to remove the K0 tadpole terms, resulting in the Lagrangian L′. We then
construct the hadronic Lagrangian in eq. (4.10), that now depends explicitly on α3,6,7,8,
and solve for α3,6,7,8 by demanding that the π0, K0, and η tadpoles vanish. The solutions
are given by

α3 = −εms

2ms+m̄(1−ε2)

{
−θ̄+ r̃

2ms

[
m̄+2ms

εm̄
d̃3+
√

3d̃8

]
−
∑
i=1,2

ri
2εm̄ms

×
[
(m̄+2ms)ImCduudiLR + 2ms+m̄(1+3ε)

2 ImCsuusiLR + 2ms+m̄(1−3ε)
2 ImCsdds3+i

]}
,

α6 =− 1
2(md+ms)

∑
i=1,2

ri
(
ImCduusiLR +ImCsuudiLR

)
,

α7 =− 1
2(md+ms)

∑
i=1,2

ri
(
ReCduusiLR −ReCsuudiLR

)
,

α8 = −1√
3

1
2ms+m̄(1−ε2)

{
−
[
ms−m̄(1−ε2)

]
θ̄+ 3εr̃

2

[
d̃3+
√

3
ε
d̃8

]

−
∑
i=1,2

3εri
2

[
ImCduudiLR + 3+ε

2ε ImCsuusiLR −
3−ε
2ε ImCsdds3+i

]}
. (4.16)
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After these rotations the Lagrangian can be written in the following form

L = LQCD
mq=0 − q̄Mq + q̄

[
−m∗(θ̄ − θ̄ind) + rd̃0 + θ′3t3 + θ′6t6+θ′7t7 + θ′8t8

]
iγ5q (4.17)

− gs
2 q̄(iσ

µνγ5)d̃CEtaq Gaµν
− CAB1LR q̄γ

µtAPLq q̄γµt
BPRq − CAB2LR q̄αγ

µtAPLqβ q̄αγµt
BPRqβ

−
[
Csuud1LL s̄γ

µPLu ūγµPLd+ Csuud2LL s̄αγ
µPLuβ ūαγµPLdβ + (L↔ R) + h.c.

]
+ . . . ,

where the dots denote terms of dimension-eight or higher or terms proportional to θ̄2 or
θ̄/Λ2. θind, θ′3, θ′6, θ′7, and θ′8 depend on hadronic LECs

θ̄ind = r̃

(
d̃u
mu

+ d̃d
md

+ d̃s
ms

)

− 2
∑
i=1,2

riIm
(
md −mu

4mumd
CduudiLR + ms −mu

4mums
Csu usi LR −

ms −md

4mdms
ImCsd ds3+i

)
,

θ′3 = r̃ d̃3 −
∑
i=1,2

riIm
(
CduudiLR + 1

2C
su us
i LR + 1

2 ImCsd ds3+i

)
,

θ′6 = 1
2
∑
i=1,2

riIm
(
Csu udiLR + Cduusi LR

)
,

θ′7 = −1
2
∑
i=1,2

riRe
(
Csu udiLR − Cduusi LR

)
,

θ′8 = r̃ d̃8 −
√

3
2

∑
i=1,2

ri
(
ImCsu usi LR − ImCsd ds3+i

)
. (4.18)

The term θ̄ind is introduced because θ̄ effectively relaxes to θ̄ind if a Peccei-Quinn
mechanism is applied. The expression for θ̄ind can be obtained by calculating the induced
vacuum energy of eq. (4.17) supplemented by terms of O(θ̄2) and O(θ̄/Λ2). The latter
depend linearly on θ̄ and ensure that, after a Peccei-Quinn mechanism is implemented
through θ̄ → θ̄a = θ̄ + a/fa, the minimum of the axion potential is shifted away from zero.
This leads to a nonzero vev for the axion field and an effective theta angle (but suppressed
by 1/Λ2), 〈θ̄a〉 = θind, even after implementation of the Peccei-Quinn mechanism. Once the
Peccei-Quinn mechanism is applied the final Lagrangian becomes

L = LQCD
mq=0 − q̄Mq + q̄

[
rd̃0 + θ′3t3 + θ′6t6+θ′7t7 + θ′8t8

]
iγ5q −

gs
2 q̄(iσ

µνγ5)d̃CEtaq Gaµν
− CAB1LR q̄γ

µtAPLq q̄γµt
BPRq − CAB2LR q̄αγ

µtAPLqβ q̄αγµt
BPRqβ

−
[
Csuud1LL s̄γ

µPLu ūγµPLd+ Csuud2LL s̄αγ
µPLuβ ūαγµPLdβ + (L↔ R) + h.c.

]
+ . . .

(4.19)

It can be verified explicitly that with θ′3, θ′6, θ′7, and θ′8 given by eq. (4.18), the hadronic
Lagrangian in eq. (4.10) does not induce tadpoles.

After eliminating the leading tadpoles in this way, one can use eq. (4.10) to derive the
low-energy effects of the CP-odd operators. The first long-distance contributions to K̄ −K
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mixing are induced by diagrams involving two insertions of ∆S = 1 operators, the result
of which we discuss in section 5.3.2. Instead, the most important flavor-conserving CPV
interactions arise from the baryonic Lagrangian which we discuss below.

4.2 CP-odd pion-nucleon interactions

The relevant CPV pion-nucleon interactions arise from

LπN = b0Tr
(
B̄B

)
Trχ+ + bDTr

(
B̄{χ+, B}

)
+ bFTr

(
B̄[χ+, B]

)
+ b̃0Tr

(
B̄B

)
Trχ̃+ + b̃DTr

(
B̄{χ̃+, B}

)
+ b̃FTr

(
B̄[χ̃+, B]

)
+ LLR , (4.20)

where b0,D,F are LECs that can be obtained from fits to the baryon masses, b̃0,D,F are LECs
related to the dipole operators and currently unknown, and B denotes the octet baryon field

B =


1√
2Σ0 + 1√

6Λ Σ+ p

Σ− − 1√
2Σ0 + 1√

6Λ n

Ξ− Ξ0 − 2√
6Λ

 . (4.21)

We have defined
χ+ = u†χu† + uχ†u , χ̃+ = u†χ̃u† + uχ̃†u , (4.22)

where χ is now given by χ = 2B [M+ i (θ′3t3 + θ′6t6 + θ′7t7 + θ′8t8)]. Finally, LLR gives rise
to so-called “direct” contributions to CPV meson-baryon interactions,

LLR = b1Tr
(
B̄B

)
labba1 +

{[(
B̄B

)
ji
− δji

3 Tr
(
B̄B

)][
b
(1)
8 liaaj1 +b(2)

8 lajia1

]
+
(

B↔ B̄

b
(1,2)
8 → b

(3,4)
8

)}

+b±10l
ijkl
1

[
B̄jiBlk±B̄jkBli

2 − δil
6

(
B̄B

)
jk
− δkj

6

(
BB̄

)
li
∓(j↔ l)

]
+b27l

ijkl
1

[
B̄jiBlk+B̄jkBli+B̄liBjk+B̄lkBji

4 − δil
12

{
B̄, B

}
jk
− δkj

12

{
B, B̄

}
li

+ δjkδil
18 Tr

(
B̄B

)]
+
(
lijkl1 ↔ lijkl2
br→ b̄r

)
, (4.23)

where lijkl1,2 = CAB1,2LR(utAu†)ij(u†tBu)kl, while br and b̄r denote currently unknown LECs.
We focus on the pion-nucleon couplings

LπN ⊃ −
ḡ0

2Fπ
N̄π · τN − ḡ1

2Fπ
π0N̄N . (4.24)

The four-quark operators enter in the above through χ+, see eq. (4.12), and LLR, where the
latter involves additional LECs that are currently unknown. In this work, we focus on the
“indirect” contributions that we do control and neglect the terms ∼ br and b̄r. The direct
pieces are expected to arise at the same order as the indirect pieces so that neglecting them
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leads to a sizable uncertainty. Matching Eqs. (4.20) and (4.24) gives,

ḡ0|LR = 2(bD + bF )F 2
0
∑
i=1,2

Ai LR
(
ImCsu usi LR − ImCsd ds3+i

)
+ ḡ0|direct ,

ḡ1|LR = 2(2b0 + bD + bF )F 2
0
∑
i=1,2

Ai LRIm
(
2CduudiLR + Csu usi LR + ImCsd ds3+i

)
+ ḡ1|direct ,

(4.25)

where we indicated the contributions from LLR by ḡ0,1|direct. In principle, we can insert
values of b{0,D,F} from fits to the baryon spectrum to obtain estimates for the indirect
pieces. We can improve these relations by resumming higher-order corrections [99, 100] and
instead write

ḡ0|LR = −
∑
i=1,2

(
ImCsu usi LR − ImCsd ds3+i

) ri
4
d δmN

dm̄ε
+ ḡ0|direct ,

ḡ1|LR = −
∑
i=1,2

Im
(
2CduudiLR + Csu usi LR + Csd ds3+i

)ri
2
dmN

dm̄
+ ḡ1|direct , (4.26)

where δmN = mn −mp and 2mN = mn +mp. The tadpole-induced pieces, proportional to
ri, depend on known quantities such as the nucleon sigma term σN = m̄(dmN/dm̄) = 59.1±
3.5MeV [101] where m̄ = (mu+md)/2 = 3.37±0.08MeV [102], and the nucleon mass induced
by the quark mass difference: (dδmN/dm̄ε) ' δmN/(m̄ε) = (2.49± 0.17 MeV)/(m̄ε) [103,
104], where ε = (md −mu)/(2m̄) = 0.37± 0.03 [102]. The above allows for an estimate of
ḡ0,1 as the LECs Ai LR are known from lattice-QCD calculations. The additional unknown
direct pieces were estimated to induce a 50% uncertainty in ref. [31].

The remaining sources of flavor-diagonal CPV in eq. (4.1), the quark CEDMs, enter
through χ̃+ and the b̃0,D,F terms, which represent the indirect and direct contributions,
respectively. In this case both the direct and indirect contributions involve unknown
LECs. We will therefore employ estimates resulting from QCD sum-rule calculations [105],
leading to

ḡ0|CEDM = −(5± 10)2Fπ
fm

(
d̃u + d̃d

)
, ḡ1|CEDM = −(20+40

−10)2Fπ
fm

(
d̃u − d̃d

)
, (4.27)

which hold at a scale of µ = 1GeV. The contributions from the strange-quark CEDM are
proportional to the small η-π mixing angle [99] and we neglect them.

5 Observables

Before describing the expressions we employ in our analysis, we briefly discuss the different
classes of experiments and the LR parameters they are most sensitive to.

• Leptonic and semileptonic charged-current decays.

These observables are known very accurately. For example, uncertainties on the
lifetimes of superallowed β emitters, which enter the determination of Vud, appear
at the O(10−4) level [106]. The branching ratios for K → µν and K → π`ν have
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uncertainties at the permille level. Leptonic and semileptonic decays of B and D

mesons are known at the percent level. In addition, the theoretical input required to
convert the observables into bounds on SM and LR parameters is only affected by
small theoretical uncertainties.
Corrections to leptonic and semileptonic decays are induced at tree level, by the
mixing between the left- and right-handed W bosons, and are proportional to CHud ∼
ξVRM

−2
WR

. We must disentangle these contributions from those from the SM CKM
matrix, ∼ VL ij , in order to constrain the LR parameters. We do so by exploiting
measurements in different channels, sensitive to the axial-vector or vector component
of the charged current. For example, purely leptonic decays of pseudoscalar mesons
probe the axial-vector component of the charged current, while 0+ → 0+ superallowed
nuclear transitions and semileptonic decays of pseudoscalar mesons are sensitive to
the vector component. In this way it is possible to fit the SM CKM parameters VLuj
and VLcj , with j ∈ {d, s, b}, together with the corresponding LR contributions.

• Purely hadronic charged-current decays.
These include ∆S = 1 processes such as K → ππ, in particular ε′, which measures
direct CP violation in kaon decays, and ∆B = 1 processes such as B → J/ψKS ,
B → ππ and B → DK, which, in the SM, contribute to the determination of the
CKM parameters ρ̄ and η̄. In the mLRSM, these processes receive contributions
from WL-WR mixing, proportional to CHud, and from the exchange of WR between
right-handed quarks, proportional to C1RR and C2RR. While the experimental
measurements have uncertainties similar to the leptonic and semileptonic decays,
theoretical uncertainties are usually much larger, so that these channels provide
sensitive probes of LR parameters only if the SM contribution is suppressed. This
is the case of ε′, which in the SM receives contributions at one loop and is further
suppressed by the small VL td and VL ts elements. In the mLRSM, ε′ receives a large
mixing contributions at tree level and is sensitive to the combination ImCijHudV

ik ∗
L ∼

ξM−2
WR

Im(V ij
R V

ik ∗
L eiα), with j, k ∈ {d, s} and j 6= k. The CP asymmetries in ∆B = 1

decays, on the other hand, arise at tree level in the SM, and are thus less sensitive to
the contribution of the LR model.

• ∆S = 1 and ∆B = 1 flavor-changing-neutral-current (FCNC) processes.
These include several rare decays of K and B mesons, such as B → Xsγ, B → µ+µ−,
KL → π0e+e− and K → πνν̄. Both in the SM and in the LR model, these are
generated through loop diagrams. For those channels sensitive to dipole operators,
such as B → Xsγ and KL → π0e+e−, the presence of a right-handed current causes
the mLRSM contributions induced by WL-WR mixing to be enhanced by ratios
of mt/md,s,b, making these rare decays very sensitive to CtiHud. Channels such as
B → µ+µ− and K → πνν̄ do not get contributions from dipole operators and thus do
not obtain enhanced contributions in the mLRSM. With the experimental sensitivity
approaching the SM level [107–109], in the near future these channels might be used
for an extraction of the VL td and VL ts CKM elements free of LR contamination.
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• Meson-antimeson oscillations.

A different source of stringent limits arise from K − K̄ and B − B̄ oscillations.
Important examples include the meson mass differences, ∆mK,Bd,Bs , and εK which
measures CP violation in kaon mixing. The experimental input is very accurate, for
instance uncertainties on ∆mK and εK are about 0.2% and 0.8%, respectively. For
observables dominated by short-distance contributions, such as εK and the B-meson
mass differences, the theoretical error is also under control. ∆mK and the D meson
oscillations parameters, on the other hand, receive sizable (dominant in the case of D
mesons) long-distance contributions, which are hard to calculate in lattice QCD. The
mLRSM gives large contributions to these observables, both at tree- and loop-level,
which generally lead to strong bounds on MH and MWR

, with less sensitivity to ξ.
As the same observables are usually used to determine the CKM elements involving
the top quark, VL ti, we again need to fit CKM and LR parameters simultaneously.

• Electric dipole moments.

Finally, the EDMs of the neutron and diamagnetic atoms probe flavor-diagonal
CP violation. While CKM contributions to EDMs are negligible [110–113], in the
mLRSM EDMs receive large tree-level contributions from the mixing between left-
and right-handed W bosons and are sensitive to the combination ImCijHudV

ij ∗
L ∼

ξM−2
WR

Im(V ij
R V

ij ∗
L eiα).

We describe the most salient features of these observables and relegate details to
appendix D.

5.1 Leptonic and semileptonic decays

Our analysis of leptonic and semileptonic decays follows closely ref. [48], with updated input
on the lattice QCD calculations of mesonic decay constants and form factors, taken from
ref. [49], and on the radiative corrections to nuclear decays [114, 115]. For each ui → dj
transition, with i ∈ {u, c} and j ∈ {d, s, b}, it is possible to find at least two independent
channels, sensitive to the vector or axial-vector component of the charged-current. In the
presence of WL-WR mixing, these receive corrections of opposite sign. Schematically

FV

∣∣∣∣∣VL ij + v2

2 C
ij
Hud

∣∣∣∣∣ = Oexp
V, ij , FA

∣∣∣∣∣VL ij − v2

2 C
ij
Hud

∣∣∣∣∣ = Oexp
A, ij , (5.1)

where Oexp
{V,A}, ij denotes the experimental input, while FV and FA denote theoretical input,

such as meson decay constants or (axial) vector form factors. The values for the relevant
meson decay constants and form factors are collected in table 5. The extraction of VL ij
and v2CijHud is thus limited by both experimental and theoretical uncertainties.

The most relevant changes with respect to the analysis in ref. [48] correspond to the
ud and us channels. For the u → d transitions, the strongest constraint on the vector
component comes from superallowed 0+ → 0+ transitions, while the leptonic decay π → µν

probes only the axial-vector part of the current. Using theory predictions for 0+ → 0+
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transitions of refs. [114–116] along with the experimental input of refs. [117–119], we have

0+ → 0+ :
∣∣∣∣∣VLud + v2

2 C
ud
Hud

∣∣∣∣∣ = 0.97370± 0.00014 ,

π → µν : fπ

∣∣∣∣∣VLud − v2

2 C
ud
Hud

∣∣∣∣∣ = (127.13± 0.02± 0.13)MeV , (5.2)

where fπ is the pion decay constant.
Right-handed currents also affect the β asymmetry in neutron decay [120, 121], described

by the parameter λ̃. While in the SM this parameter is determined by the ratio of the
nucleon axial and vector charges, gA and gV , in the mLRSM one has

λ̃ = gA
gV

(
1− v2CudHud

VLud

)
. (5.3)

λ̃ is measured with error of 0.1%, λ̃ = 1.2754 ± 0.0013 [119]. The extraction of CudHud is
limited by the uncertainty on the lattice QCD determination of gA. Currently, the most
precise calculation quotes an error of 1% [122], so that π → µν still provides a stronger
constraint. With a further reduction of the uncertainties by a factor of two, however, the
neutron β asymmetry will become competitive.

For the s → u transitions, semileptonic kaon decays probe the vector current, while
the ratio of leptonic kaon and pion decays probe the axial interaction. From refs. [49, 123]
one obtains,

K → πlνl fKπ+ (0)
∣∣∣∣∣VLus + v2

2 C
us
Hud

∣∣∣∣∣ = 0.2165± 0.0004 ,

K → µν :
fK
∣∣∣VLus − v2

2 C
us
Hud

∣∣∣
fπ
∣∣∣VLud − v2

2 C
ud
Hud

∣∣∣ = 0.2760± 0.0004 . (5.4)

Eq. (5.2) uses a re-evaluation of the universal “inner radiative corrections” in 0+ → 0+

transitions [114–116], which led to a reduction in the uncertainty and a significant shift
of the central value. This resulted in a 3σ shift of the SM determination of Vud|0+→0+

from 0.97420± 0.00021 [124] to the value in eq. (5.2), and a resulting tension with CKM
unitarity. As we will discuss in section 6.3, this tension can in principle be solved by
right-handed currents, but in the mLRSM this requires a relatively light WR, which is ruled
out by other observables. For kaon decays, a new lattice QCD calculation of fKπ+ (0), with
Nf = 2 + 1 + 1 [125], reduced the error by a factor of 1.6, and somewhat increases the
tension with the SM. Here we will use the Nf = 2 + 1 values in table 5 which lead to a less
pronounced deviation from the SM.

We follow a similar strategy for the remaining elements of VL and CHud, and give the
relevant expressions for the leptonic and semileptonic decays of D and B mesons, and for
decays of the Λb baryon, in appendix D.1. B → Dlνl, B → D∗lνl as well as the inclusive
decays B → Xclνl and Λb → Λcµνµ allow one to determine the CKM parameter A, while
B → πlνl, B → Xulνl, B+ → τ+ντ , and Λb → pµνµ determine |VLub|, which is proportional
to |ρ̄− iη̄|.
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In addition to lifetimes and branching ratios, in the case of semileptonic decays of
particles with spin it is possible to measure the triple correlation 〈 ~J 〉 · (~pe × ~pν), where ~J is
the polarization of the decaying particle, which is sensitive to time-reversal violation [126].
This correlation has been measured in the decays of neutrons and Σ baryons [127, 128], and
can be used to constrain the imaginary part of CHud.

5.2 Hadronic ∆S = 1 and ∆B = 1 charged-current processes

This class includes hadronic decays of K and B mesons, such as K → ππ, B → ππ and
B → J/ψKS . In the SM, these receive tree-level contributions from the operators C1LL
and C2LL, induced by the exchange of a WL between quarks. In addition they can receive
important contributions from strong and weak penguin diagrams [129].

The most important observable in this class is ε′ that measures direct CP violation in
K → ππ decays and can be written as [130]

ε′ = iei(δ2−δ0)
√

2

( ImA2
ReA0

− ReA2
ReA0

ImA0
ReA0

)
. (5.5)

Here A0,2 represent the amplitudes A0,2 = 1√
2〈(ππ)I=0,2|iH|K0〉, with I the isospin state

of the pions. We use the experimental values for the real parts of these amplitudes

ReA0 = 33.201 · 10−8 GeV , ReA2 = 1.479 · 10−8GeV . (5.6)

In the SM, the amplitudes A2 and A0 are real at tree level. An imaginary part is
generated by one-loop diagrams with virtual top quarks, and ε′ is proportional to the
imaginary part of

τ = − V
∗
L tsVL td

V ∗LusVLud
, (5.7)

which, in the SM [50],9

τSM = (1.558(65)− 0.663(33)i) · 10−3 . (5.8)

The loop and CKM suppression, and the additional suppression by the I = 1/2 rule,
ReA2/ReA0 ∼ 1/22, lead us to expect a rather small value, to be compared with the
experimental value

Re
(
ε′/εK

)
exp = 16.6(2.3) · 10−4 . (5.9)

In the SM, ImA0 and ImA2 are dominated by the matrix elements of strong and weak
penguin operators, respectively (see, for example, the discussion in ref. [131]). Recent
first-principle calculations of these matrix element in lattice QCD have significantly reduced
the error of the SM prediction [50], which now reads

Re
(
ε′/εK

)
SM = Im τ

Im τSM
× 21.7(2.6)(6.2)(5.0) · 10−4 , (5.10)

9Notice that the value of τSM in eq. (5.8), given in ref. [50], differs by about 10% from the one obtained
with the latest CKM fits in ref. [119]. Since in our framework we need to rescale the lattice QCD estimate
of ε′/εK to allow CKM parameters to vary from their SM values, we use the same τSM as given in ref. [50].
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where the errors are the statistical and systematic uncertainties, with the latter broken up
into isospin-conserving and isospin-violating pieces. This estimate is in good agreement
with a recent reappraisal of the SM value of ε′/εK based on χPT and large-Nc, which
yields [132]

Re
(
ε′/εK

)
SM = 14(5) · 10−4 . (5.11)

The imaginary parts of A0 and A2 receive new contributions from the LR and RR
operators appearing in eq. (3.14). Most of these contributions can be derived from the
chiral Lagrangian discussed in section 4, the only additional terms arise from the parts of
the RR operators that transform as 27R × 1L, which were omitted in the chiral discussion
of section 4. These contributions were determined in ref. [92] and, together with the other
BSM contributions, give

ImA2 = F0

2
√

6
Ai LRIm

(
CsuudiLR −

(
Cduusi LR

)∗)
+ 1

12
√

3
A′(27,1)Im (Cduus1RR + Cduus2RR) , (5.12)

ImA0 = − F0√
3
Ai LRIm

(
CsuudiLR −

(
Cduusi LR

)∗)
−
√

3F0
4 (m2

K −m2
π)A(8)

i LLIm
(
CduusiRR

)
,

where A(8)
i LL = A(8)

i RR, Ai LR are given in eq. (4.14) and A′(27,1)(3 GeV) = 0.0461(14) GeV3.
Here we neglected the contributions to A0 proportional to A′(27,1) because, as mentioned in
section 4, these terms can be shown to be small compared to the 8R × 1L contributions.

The other observables in this class include B → J/ψKS , B → ππ, and other ∆B = 1
decays used to determine the CKM angles α, β and γ [119]. In appendix D.2.1 we argue that
the LR contribution due to tree-level WR exchange to time-dependent CP asymmetry in
B → J/ψKS can be neglected within current uncertainties, and thus the standard extraction
of β = Arg(−VLcdV ∗Lcb/VL tdV ∗L tb) can be used in the CKM fits. While similar considerations
likely apply to other non-leptonic channels such as B → ππ and B → DK, used to determine
α and γ, we do not explicitly include them in our analysis as hadronic matrix elements
associated to LR contributions are not under control. Finally, the corrections to the B0

d and
B0
s widths also belong to this class. We compute the mLRSM corrections in appendix D.2.5.

5.3 ∆F = 2 processes

We move on to observables in B − B̄ and K − K̄ oscillations that severely constrain the
mLRSM. The experimental input on the B − B̄ mass and width differences, ∆md, ∆ms,
∆Γ(d) and ∆Γ(s), the K − K̄ mass difference ∆mK , and εK , which measures CP violation
in K − K̄ mixing, are reported in table 1. We now discuss the theoretical input, and the
leading uncertainties.

5.3.1 B − B̄ oscillations

For the Bq mesons, with q = {d, s}, to good approximation we can use

∆mq = 2|M (q)
12 | =

∣∣∣〈B̄0
q |Heff(∆B = 2)|B0

q 〉
∣∣∣

mBq

. (5.13)
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∆S = 2 ∆MK (5.293± 0.009) ns−1 |εK | (2.228± 0.011) · 10−3

∆B = 2 ∆md (0.5064± 0.0019) ps−1 ∆ms 17.7656± 0.0057 ps−1

∆Γ(d) (−1.3± 6.7) · 10−3 ps−1 ∆Γ(s) (0.086± 0.006) ps−1

adfs −0.0020± 0.0016 asfs −0.0006± 0.0028
∆B = 1 BR (B → Xdγ) (14.1± 5.7) · 10−6 BR (B → Xsγ) (3.32± 0.15)× 10−4

ACP (B → Xd+sγ) 0.032± 0.034 ACP (B → sγ) 0.015± 0.02
SK∗γ −0.16± 0.22

Table 1. Experimental input for the processes discussed in section 5.3 and for the ∆B = 1 processes
discussed in appendix D.2 [119, 133, 134]. The branching ratios BR (B → Xd,sγ) have a cut on the
photon energy, Eγ > 1.6GeV.

Within the SM the ∆B = 2 Hamiltonian involves operators of the form (b̄LγµqL)(b̄LγµqL)
that are generated through box diagrams. This leads to

M
(q)
12
∣∣
SM =

G2
Fm

2
WmBq

12π2

(
V ∗L tqVL tb

)2
f2
BqB̂BqηBS0(xt, xt) , (5.14)

with xi = m2
i /m

2
W and xt should be evaluated at µ = mt, ηB = 0.55± 0.01 [135]. The loop

function S0(xi, xj) = 1
4(f1(xi, xj)− f1(0, xj)− f1(xi, 0) + f1(0, 0)), with

f1(xi, xj) = −
x2
j (4− 8xj + x2

j )
(xi − xj)(−1 + xj)2 log(xj) + x2

i (4− 8xi + x2
i )

(−1 + xi)2(xi − xj)
log xi . (5.15)

Finally, the RG-invariant bag parameter, B̂Bq , is related to the matrix element of the
left-handed operator mentioned above, for which we use the FLAG average [49] shown in
table 2.

The BSM contributions arise from the O4,5 operators in eq. (3.14), which are generated
through exchange of heavy scalar bosons and loop diagrams involvingWR. The contributions
are

M
(q)
12
∣∣
LR =

mBqf
2
Bq

2

[1
3C

bdbd
4 B5

(
Rq(µ) + 3

2

)
+ Cbdbd5 B4

(
Rq(µ) + 1

6

)]∗
, (5.16)

where Rq(µ) = m2
Bq
/(mb(µ) +mq(µ))2 and the bag factors, related to the matrix elements

of O4,5, are shown in table 2.
We then use the above expressions with ∆mq = 2

∣∣M (q)
12
∣∣
SM +M

(q)
12
∣∣
LR
∣∣ to estimate the

mass differences, which we compare with the experimental values [119] shown in table 1.

5.3.2 ∆mK and εK
The mixing between K̄0 and K0 is described by the off-diagonal matrix element,

2mKM
∗
12 = 〈K̄0|Heff(∆S = 2)|K0〉 . (5.17)

To good approximation, the real part of this amplitude determines the kaon mass difference

∆MK = MKL −MKS = 2ReM12 , (5.18)
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fBq

√
B̂Bq (MeV) f2

Bq
B4 (GeV2) f2

Bq
B5 (GeV2) f2

Bq
B2 (GeV2) f2

Bq
B3 (GeV2)

B0
d − B̄0

d 225 (9) 0.0390 (28)(8) 0.0361 (35)(7) 0.0285 (26)(6) 0.0402 (77)(8)
B0
s − B̄0

s 274 (8) 0.0534 (35)(7) 0.0493 (36)(10) 0.0421 (27)(8) 0.0576 (77)(12)

B̂K B4 B5

K0 − K̄0 0.7625(97) 0.926(19) 0.720(38)

Table 2. Relevant bag parameters for Bq − B̄q oscillations and K0 − K̄0 oscillations. For Bq − B̄q
oscillations we use the RG-invariant definition, B̂Bq [49], for the SM operator, while the bag
parameter for the LR model are given in the MS scheme, at the renormalization scale µ = mb [136].
For K0 − K̄0 oscillations, B̂K is RG-invariant [49], while B4 and B5 are given in the MS scheme, at
µ = 3GeV. We use the Nf = 2 + 1 averages reported in ref. [49].

while the imaginary part is connected to CP violation in K̄0 −K0 mixing, described by
εK [129],

εK = A(KL → (ππ)I = 0)
A(KS → (ππ)I = 0) '

eiπ/4√
2∆MK

(
ImM12 + 2ReM12

ImA0
ReA0

)
, (5.19)

where the second equality uses the approximation ∆ΓK ' −2∆MK [130].

The SM prediction. Starting with the SM prediction, M12 receives both short- and
long-distance contributions. The former arise from local ∆S = 2 operators, which appear
at loop level in the SM and give rise to

MSM
12
∣∣
SD

= G2
Fm

2
W

12π2 mKf
2
KB̂K

(
ηccλ

2
cS0(xc) + 2ηctλcλtS0(xc, xt) + ηttλ

2
tS0(xt)

)∗
,

where λi = V ∗L isVL id, xt should be evaluated at µ = mt and xc at µ = mc and B̂K describes
the non-perturbative matrix element, given in table 2. From refs. [49, 135] we have

ηcc = 1.87± 0.76, ηct = 0.496± 0.047 , ηtt = 0.5765± 0.0065 , (5.20)

while the loop function S0 is given in section 5.3.1. The short-distance contributions
dominate in the CP-violating observable εK , allowing us to write

εSM
K = eiπ/4κε√

2∆M expt.
K

Im
(
MSM

12
∣∣
SD

)
, (5.21)

where κε = 0.94± 0.02 [135] takes into account long-distance contributions. In the case of
εK , it is advantageous to use the unitarity of the CKM matrix to rewrite the contributions
from cc, ct, and tt graphs in eq. (5.3.2) in terms of ut and tt diagrams. This leads to [51]

|εSM
K | =

G2
F f

2
KmK0m2

W

6
√

2π2∆MK

B̂Kκε |VLcb|2λ2η̄
(
|VLcb|2(1− ρ̄)ηttS(xt)− ηutS(xc, xt)

)
, (5.22)

where λ, η̄ and ρ̄ determine the CKM matrix in the Wolfenstein parametrization [137]. The
loop functions are given by

S(xt) = S0(xt) + S0(xc)− 2S0(xc, xt) ,
S(xc, xt) = S0(xc)− S0(xc, xt) , (5.23)
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and the running factors are

ηtt = 0.55(1± 4.2% + 0.1%) = 0.55± 0.02 ,
ηut = 0.402(1± 1.3%± 0.2%± 0.2%) = 0.402± 0.005 , (5.24)

leading to a small uncertainty on ηut compared to large uncertainties in the cc and ct

running factors, at the price of a slightly larger uncertainty on ηtt. We use eq. (5.22) for
the SM prediction.

Unfortunately, unitarity cannot be used in the same way for the SM prediction for
the real part of the amplitude that gives rise to ∆MK . We therefore employ Eq. (5.3.2)
to obtain the SM expression for the short-distance contribution to ∆MK . In addition,
long-distance contributions are significant in this case and lead to sizable uncertainties. We
will assume no significant discrepancy between the SM and experimental measurement and
simply use the experimental determination to estimate the SM prediction of ∆MK . We
thus assign a theoretical uncertainty of σ2

SM = σ2
SD,SM +

(
∆MK |expt. −∆MSM

K |SD
)2
, where

σSD,SM is the uncertainty due to ∆MSM
K |SD.

The BSM contributions. Short-distance LR contributions arise through the O4,5 oper-
ators in eq. (3.14)

MLR
12
∣∣
SD

= mKf
2
K

2

(
mK

md +ms

)2 (1
3B5C

sdsd
4 +B4C

sdsd
5

)∗
, (5.25)

where nf = 2 + 1 lattice calculations of the matrix elements are given in table 2. Long-
distance effects are induced by two insertions of ∆S = 1 operators, e.g. Ci LL × Ci LR and
Ci LL×Ci RR. We neglect the parts of the LL, RR operators that transform as 27L,R×1R,L,
and use the 8L,R×1R,L pieces to estimate these effects (see the discussion around Eq. (4.14)).
The long-distance pieces can then be evaluated using the chiral Lagrangian in eq. (4.10).
This gives

2mKM
LR
12
∣∣
LD

= F 4
0G8

m2
K0(4m2

K0 − 3m2
η −m2

π0)
(m2

K0 −m2
π0)(m2

K0 −m2
η)

[
− 1

2Ai LR
(
Csu udiLR +

(
Cduusi LR

)∗)
+ m2

K

3 A
(8)
i RRC

suud
iRR

]∗
, (5.26)

where G8 = A(8)
i LLCi LL/4 is the coefficient of the SM operators transforming as 8L × 1R.

As in the SM [138], these contributions vanish at LO in χPT after taking into account the
Gell-Mann-Okubo relation. The first contributions then arise at N2LO where loops and new
LECs appear. As we do not control these LECs, we estimate the contributions by using the
experimental values for the meson masses in eq. (5.26) and assign a 50% uncertainty to
this result [31].

We then estimate ∆MK by using ∆MK = ∆MK

∣∣
expt. + 2ReMLR

12 , with MLR
12 =

MLR
12
∣∣
SD

+MLR
12
∣∣
LD

. To compute the CP violation in mixing we use εK = εSM
K + εLR

K . We
rewrite Eq. (5.19)

εLR
K = eiπ/4√

2

(
ImMLR

12
∆M expt.

K

+ ImALR
0

ReAexpt.
0

)
, (5.27)

where the mLRSM contributions to Im A0 are given by eq. (5.12).
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e cm dn dp,D dHg dRa

current 1.8 · 10−26 − 6.3 · 10−30 1.2 · 10−23

expected 1.0 · 10−28 1.0 · 10−29 1.0 · 10−30 1.0 · 10−27

Table 3. The first row shows the current 90% C.L limits on the EDMs of the neutron [62, 140, 141],
199Hg [142, 143], and 225Ra [144]. The second row shows the expected sensitivities of future EDM
experiments, see ref. [145].

To obtain constraints we finally compare the above theoretical expressions with the
experimental measurements given in table 1. We treat the experimental uncertainties and
those due to eqs. (5.20), (5.25), and (5.26) as statistical.

As mentioned in section 3.5 our analysis of the short-distance contributions to ∆F = 2
observables is similar to that of refs. [22, 41]. Differences arise from our use of updated lattice
QCD results and a somewhat different approach to the diagrams involving intermediate
c− c and c− t quarks. Comparing numerically to the expressions of ref. [22], we find that
the heavy Higgs contributions agree to within 20% after turning off the running between
mW and MWR

. Similar agreement is found for the WR contributions that are due to t− t
diagrams, while we find the terms induced by the c − c and c − t graphs to be larger by
a factor of ∼ 1.6 and 3.9, respectively. Note that these contributions are only potentially
significant for the kaon system, while the Bd,s systems are dominated by the t− t graphs.
In addition, we take into account the RGE evolution between MWR

and mW , the effects of
which are discussed in section 3.6, with approximate formulae given in appendix E.

Apart from these different treatments of LR contributions, there are slight differences in
the fitting procedures. Ref. [40] constrained LR contributions by demanding that they are
smaller than a certain fraction of the SM prediction, in the case of εK and ∆MK , while using
the results of a fit that assumes BSM physics to dominantly arise in B̄−B oscillations [139] to
constrain M (d,s)

12 in the Bd,s-meson sector. Instead, we fit theoretical results for observables
(including up-to-date SM predictions) directly to experimental measurements, taking into
account theoretical and experimental uncertainties as described above. This allows us to
incorporate the LR contributions to other flavor observables in a consistent manner, without
having to assume that LR effects are dominant in a certain sector.

5.4 ∆F = 0 observables: electric dipole moments

EDMs set stringent limits on the CP-violating interactions within the mLRSM. Here
we focus on the contributions to the EDMs of hadronic and nuclear systems, the current
experimental limits of which are collected in table 3. In this section, we assume a Peccei-
Quinn mechanism is active. In the absence of such a mechanism, all EDMs are dominated
by the induced θ̄ term (see section 2.4).

5.4.1 Nucleon EDMs

The EDMs of the neutron and proton receive contributions from several operators. We start
with the four-quark operators, discussed in section 4, that generate sizable pion-nucleon
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couplings. These operators give rise to direct and indirect contributions to the nucleon
EDMs. The former are governed by so far unknown LECs, while the latter are due to
loop diagrams involving the CP-violating pion-nucleon couplings of section 4.2. The EDMs
resulting from the four-quark operators can be written as follows [146]

dn|LR = d̄n(µ)|LR + egAḡ1|LR
(4πFπ)2

(
ḡ0|LR
ḡ1|LR

(
log m

2
π

µ2 −
πmπ

2mN

)
+ 1

4(κ1 − κ0)m
2
π

m2
N

log m
2
π

µ2

)
,

dp|LR = d̄p(µ)|LR −
egAḡ1|LR
(4πFπ)2

[
ḡ0|LR
ḡ1|LR

(
log m

2
π

µ2 −
2πmπ

mN

)

− 1
4

(
2πmπ

mN
+
(5

2 + κ1 + κ0

)
m2
π

m2
N

log m
2
π

µ2

)]
, (5.28)

where ḡ0,1|LR are given in Eq. (4.25) and d̄n,p(µ)|LR are unknown LECs due to the direct
contributions of the four-quark operators. In addition, gA ' 1.27, and κ0 = −0.12 and
κ1 = 3.7 are related to the nucleon magnetic moments. We estimate these contributions
by taking µ = mN with d̄n,p(mN ) = 0 as a central value. The impact of the associated
theoretical uncertainty due to the unknown LECs was discussed in ref. [31].

In the case of the quark CEDMs both the direct and indirect contributions to the
nucleon EDMs involve unknown LECs. We therefore employ QCD sum-rules estimates to
estimate the total induced nucleon EDMs [84, 111, 147, 148], while we use recent QCD
sum-rule [149] and quark-model [150] calculations to estimate the contributions of the
Weinberg operator. In addition, the nucleon EDMs receive contributions from the remaining
CP-odd interactions, namely, the quark EDMs. Assuming a Peccei-Quinn mechanism, the
sum of these terms then takes the form

dn = dn|LR + guT du + gdT dd + gsT ds

− (0.55± 0.28) e d̃u − (1.1± 0.55) e d̃d − 20 (1± 0.5) MeV e gsCG̃ ,

dp = dp|LR + gdT du + guT dd + gsT ds

+ (1.30± 0.65) e d̃u + (0.60± 0.30) e d̃d + 18 (1± 0.5) MeV e gsCG̃ , (5.29)

where du = eQumuImCuuγu and dq = eQqmqImCqqγd for q = d, s. The strange CEDM induces
vanishing contributions if a Peccei-Quinn mechanism is active [147]. The quark-EDM
contributions have been determined by lattice QCD calculations [151–155], which give at
µ = 1GeV

guT = −0.213± 0.012 , gdT = 0.82± 0.029 , gsT = −0.0028± 0.0017 . (5.30)

All couplings in Eq. (5.29) should be evaluated at 1GeV.

5.4.2 Nuclear and atomic EDMs

We finally consider expressions for the EDMs of light nuclei and diamagnetic atoms. The
EDMs in the former category are theoretically attractive as they can accurately be described
in terms of the nucleon EDMs and the pion-nucleon couplings [156, 157]. We will focus
on the EDM of the deuteron in the following. Although no experimental limits have been
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set on the EDMs of light nuclei so far, there are advanced proposals to measure them in
electromagnetic storage rings [158], with an expected sensitivity given in table 3.

In contrast, the EDMs of diamagnetic atoms are stringently constrained experimentally,
especially that of 199Hg, but they are subject to much larger theoretical uncertainties. The
main contributions to the EDMs of these systems are expected to arise from the nuclear
Schiff moment, as there are no large enhancement factors to mitigate the Schiff screening
by the electron cloud [159]. The nuclear Schiff moment obtains large contributions from the
pion-nucleon couplings, ḡ0,1, which, however, require complicated many-body calculations.
Currently, such calculations cannot be performed with good theoretical control [160–164],
leading to large nuclear uncertainties, while the contributions from the nucleon EDMs are
under better control. Here we will focus on the EDMs of mercury, currently the most
stringently constrained system experimentally, and radium. The experimental limit on the
latter is significantly weaker than the former, but future measurements aim at improvements
of several orders of magnitude.

Collecting all the above information, we use

dD = (0.94± 0.01)(dn + dp)−
[
(0.18± 0.02) ḡ1

2Fπ

]
e fm ,

dHg = −(2.1± 0.5) · 10−4
[
(1.9± 0.1)dn + (0.20± 0.06)dp

−
(

0.13+0.5
−0.07

ḡ0
2Fπ

+ 0.25+0.89
−0.63

ḡ1
2Fπ

)
e fm

]
,

dRa = (7.7± 0.8) · 10−4 ·
[
(−2.5± 7.6) ḡ0

2Fπ
+ (63± 38) ḡ1

2Fπ

]
e fm , (5.31)

where ḡ0,1 = ḡ0,1
∣∣
LR

+ ḡ0,1
∣∣
CEDM can be read from Eqs. (4.26) and (4.27), dn,p are given

by Eq. (5.29), and the experimental constraints are shown in table 3. Within our analysis
we estimate the EDMs by using the central values for the relevant hadronic and nuclear
matrix elements and refer to refs. [31, 165] for a discussion on the impact of the associated
uncertainties.

6 Results

After computing the observables described in the previous section we construct a χ2

χ2 =
∑

i={obs}

(
Oth
i −O

expt
i

σi

)2

, (6.1)

where Oth
i and Oexpt

i are the theoretical and experimental determinations of a particular
observable and σi is determined by summing the corresponding experimental and theoretical
uncertainties described in the previous section in quadrature. The χ2 function thus depends
on the parameters appearing in the LR model, MWR

, MH , α, and ξ, as well as the SM
CKM elements.

Some of the LR parameters are subject to theoretical constraints. As discussed in
ref. [74], the massesMWR

andMH are both related to the vev vR, so thatMH/MWR
is given
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by the ratio of parameters in the Higgs potential and the SU(2) gauge coupling. As the latter
is fixed from experiment, a significant hierarchy MH �MWR

would force the parameters
in the Higgs potential to become non-perturbatively large. Because our description breaks
down in this part of parameter space, we focus on the region MH < 8MWR

. Note that if
one wants to keep these parameters in the perturbative regime up to the Grand Unification
scale, µ ∼ 1016 GeV, stringent limits on the LR scale of vR & 10TeV can be set as well [166].

Similarly, for tuned values of κ′/κ = ξ ' 1 certain parameters in the Higgs potential
would have to become non-perturbatively large, see appendix A.1. To avoid this region
we take |ξ| ≤ 0.8. The CP-violating combination of parameters, t2βsα = tan 2β sinα, is
constrained to be |t2βsα| . 2mb/mt in order to reproduce the quark masses [41, 60], see
appendix A.1 for more details. Finally, for the CKM elements we use the Wolfenstein
parametrization, which parametrizes the CKM matrix in terms of λ, A, ρ̄, and η̄, and
we expand the expressions up to O(λ6) [137]. We then simultaneously fit the four CKM
parameters along with the LR parameters.

Obtaining constraints, e.g. in the MWR
− MH plane, involves marginalizing over

the remaining SM and LR parameters. This minimization of the χ2 is performed using
NLopt [167], a free/open-source library for nonlinear optimization which includes various
global and local optimization algorithms. In particular, an Improved Stochastic Ranking
Evolution Strategy [168] is used. To obtain fits as those depicted in figure 1, we divide the
MWR

−MH plane into 40× 40 squares within which we marginalize over all LR and CKM
parameters. For each square, MWR

andMH are then constrained to lie within the considered
square, while the remaining parameters are varied within the ranges described above.

Before discussing the resulting constraints on the mLRSM we check our expressions
by performing an analysis of the CKM parameters in the decoupling limit, MH,WR

→∞.
We find

λ ∈ [0.2254, 0.2267] , A ∈ [0.78, 0.82] , ρ̄ ∈ [0.07, 0.16] η̄ ∈ [0.35, 0.39] , (6.2)

at 90% C.L. These values are similar to the results of ref. [48] and are consistent with
the values advocated by the PDG [119]. The ranges found here are wider than those of
ref. [119], especially in the case of ρ̄ and η̄. The reason for the weaker constraints in the
SM limit is that we do not include non-leptonic B decays like B → ππ. The evaluation of
these decays in the mLRSM would require additional non-perturbative matrix elements
that are not currently available.

6.1 Analysis without a Peccei-Quinn mechanism

We begin the analysis in the parity-conserving mLRSM without a PQ mechanism where
the model itself accounts for the smallness of the CP-violating QCD vacuum angle. As
discussed in section 2.4, θ̄ now becomes a calculable function in terms of the LR parameters.
Current EDM measurements then require that the spontaneous phase t2βsα ' 0 to very
good approximation and in essence transfer the strong CP problem from θ̄ to α. This
effectively sets α = 0,10 that is, the EDM constraints are so strong that they effectively

10Note that t2β → 0 does not give rise to a different solution to the constraint t2βsα ' 0. The reason is
that α always appears in the combination tβeiα.
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Figure 1. The left panel depicts the ∆χ2 = {1, 2, 4, 10} constraints in the MWR

-MH plane, after
marginalizing over the other LR and CKM parameters. No Peccei-Quinn mechanism is applied.
The gray line shows the MH > 8MWR

region where couplings in the Higgs potential become
non-perturbatively large [74]. The left and right panels depict the sign configurations st = +1 and
st = −1, respectively, with sq 6=t = +1 for the remaining signs.

remove one parameter from the analysis and, after this removal, they no longer constrain
the remaining parameters. We are then left with three LR parameters (MWR

, MH , and ξ)
and the CKM parameters that can be varied. We remind the reader that the right-handed
quark-mixing matrix is expressed in terms of CKM parameters and quark masses and a set
of discrete phases and reduces to VR = SuVLSd in this limit, see appendix A. We begin our
analysis by setting all discrete phases to θq = 0, and later discuss the impact of alternative
sign combinations.

The main result is shown in figure 1 which depicts ∆χ2 = {1, 2, 4, 10} contours in the
MWR

-MH plane, where each point has been minimized with respect to the remaining LR
and CKM parameters. The left plot illustrates a clear lower bound on MWR

& 38TeV at
95% C.L. (∆χ2 = 4) in the limit of a decoupled MH & 400TeV. Part of this parameter
space however covers a range where the Higgs sector contains non-perturbatively large
parameters. Constraining the parameter space to MH < 8MWR

implies a stronger bound
MWR

& 45TeV at 95% C.L. and MH > 240TeV at 95% C.L. for the scalar mass. The
bound on MWR

is very stringent in light of the current limit on the MWR
≥ 4 TeV from

direct production at the LHC [169].
We still need to address the role of the sign choices, which in principle lead to 32

distinct variants of the P -symmetric model. It turns out that choosing si = +1 for all the
signs leads to significantly more stringent constraints than some other assignments. For
instance, setting st = −1 while keeping the other signs the same, leads to the right panel
of figure 1. In this case, we obtain roughly MWR

& 17TeV 95% C.L. in the perturbative
regime. We find that each of the 32 sign combinations essentially fall in either of the two
scenarios shown in figure 1. While the more stringently constrained scenarios give rise to
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a similar value for χ2|min as the SM, the less constrained sign combinations allow for a
smaller value by about ∼ 5. We discuss this slight improvement of the fit compared to
the SM in more detail in the next subsection, in which we consider the LRM with a PQ
mechanism, where a similar improvement of the fit can be achieved.

In both cases, the strong bounds are essentially driven by εK . This observable obtains
contributions due to sinα as well as mLRSM contributions proportional to the CP-odd
phase in the CKM matrix that survive even when α→ 0. A low-mass WR then requires
cancellations to occur between these two different LR contributions to CP-violation in
K0 − K̄0 mixing. This only becomes possible in case of a sizable spontaneous phase
α [22, 38, 40, 41] which is excluded in the absence of a PQ mechanism, leading to stringent
limits. The εK constraint is easier to satisfy for the choice stsc = −1 and sdss = +1 in
agreement with ref. [40]. This leads to the least stringent limits and defines the class of
signs depicted in the right panel of figure 1. As other observables are not as constraining, it
will be difficult to further tighten the limits from low-energy constraints barring further
theoretical refinements of the SM prediction of εK . The result MWR

& 17TeV is still very
strong compared to direct limits and is in good agreement with ref. [39] that obtained
MWR

& 13TeV. The main differences with respect to our analysis is that we applied an
updated SM prediction for εK , an improved RGE analysis, and performed a fit involving
both the CKM and LR parameters.

6.2 Analysis with a Peccei-Quinn mechanism

We now consider the parity-conserving mLRSM in presence of a PQ mechanism. The strong
CP problem is now resolved in the infrared and although EDMs still lead to significant
constraints, they no longer effectively force α ' 0. We start our analysis by setting all signs
to sq = +1. This leads to the plots in figure 2. The left panel shows ∆χ2 = {1, 2, 4, 10}
contours in the MWR

-MH plane, after marginalizing with respect to the other parameters.
We thus obtain a lower bound of MWR

& 5.5TeV at 95% C.L., in the parameter space
where MH < 8MWR

. This limit is significantly weaker than obtained in the no-PQ scenario,
where a lower bound of MWR

& 38TeV was obtained for the same choice of discrete signs
(weakened to ∼ 17TeV for the most favorable sign combination).

The weaker limit on MWR
compared to the scenario without a PQ mechanism is driven

by the relaxed constraint on α and allows for a significant t2βsα 6= 0. As εK obtains
contributions from both the CKM phase and the spontaneous phase α cancellations between
the two terms now become possible [39, 40]. This is depicted in the right panel of figure 2
where small values of MWR

clearly require a nonzero value of t2βsα. This rather specific
value of t2βsα, illustrated by the funnel in the right panel leads to the mentioned cancellation
which allows for much smaller values of MWR

.
The lowering of the limit on MWR

only goes so far. For small MWR
other CP-violating

observables like ε′/εK and EDMs become large, as these observables are induced by the
CP-odd combination t2βsα which is forced to be sizable by εK . We illustrate this in
figure 3. Here we focus on the parameter space with MH = 6MWR

and MWR
< 30TeV as a

representative example. The remaining parameters are set to the values preferred by the fit
as a function of MWR

. In this region, the value of t2βsα then ranges between −0.009 and
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Figure 2. The left panel depicts the ∆χ2 = {1, 2, 4, 10} regions in the MWR
-MH plane, after

marginalizing over the other LR and CKM parameters. A Peccei-Quinn mechanism is applied.
The gray line shows the MH > 8MWR

region where couplings in the Higgs potential become non-
perturbatively large [74]. The right panel shows the allowed parameter space in the MWR

-t2βsα
plane for fixed MH = 6MWR

, while marginalizing with respect to the remaining parameters. Both
panels correspond to the choice sq = +1.
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Figure 3. The left panel shows the values of various EDMs as a function of MWR
inside the ‘funnel’

region where t2βsα ' −0.01. The dashed lines indicate current limits. The right panel does the
same for ε′/εK , where the width of the blue band indicates the uncertainty of the SM prediction.

−0.014 with tβ ' −0.05 remaining constant,11 corresponding to part of the funnel region
in the right panel of figure 2. We then plot values of the various EDMs as a function of
MWR

. The effect of the Schiff screening that affects the mercury EDM can clearly be seen
from the relative sizes of dn and dHg, while the relatively large values of dRa are due to the
octupole enhancement discussed in section 5.4. The largest EDM is found to be that of the
deuteron, which does not suffer from the suppression due to Schiff screening and is rather
sensitive to the πN couplings which receive large contributions in the mLRSM.

11The values of the SM CKM parameters preferred by the fit also remain roughly constant in this region,
with λ ' 0.226, A ' 0.79, ρ̄ ' 0.18, and η̄ ' 0.34.
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Figure 4. 68% C.L. contours from various flavor observables in the ρ̄− η̄ plane for two scenarios,
namely the SM, MH,WR

→ ∞, and the case with the best fit values for the LR parameters,
{MH ,MWR

, t2βsα, α} ' {200 TeV, 21 TeV,−0.01, 3.04}. The difference is only noticeable in the case
of εK for which the SM and LRM bands are shown in black and red, respectively. Each band was
obtained including s→ u and b→ c observables in order to marginalize with respect to A and λ.
The best fit points in the SM and LRM are shown as black and red points, respectively.

We observe that several EDMs are predicted to lie only one or two orders of magnitude
below the present limits. That is, next-generation EDM experiments can test the funnel
region corresponding to low values of MWR

. For instance, a 225Ra EDM measurement at the
10−14e fm level might be possible [144] and would already go a long way in excluding small
values of MWR

. Similarly, a small improvement on dHg would have a big impact on the
funnel region. Possible storage-ring experiment of dD ≤ 10−16e fm could have an even larger
impact. We stress that a lower limit on MWR

, assuming improved EDM measurements,
cannot easily be deduced from the figure as it assumes values of t2βsα which resulted from
a fit with current experimental input. Obtaining a new lower limit on MWR

would require
one to perform a new global fit once improved EDM measurements are available. The right
panel of figure 3 shows that future improvements in the theoretical prediction of ε′/εK ,
which would shrink the width of the blue band, are also excellent probes of the low MWR

regime. Apart from EDMs, there are several CP-even observables, particularly the B and
K mass differences, which obtain significant corrections for MWR

in the TeV range.
Finally, we note that the fit has a slight preference for finite values of MWR

and MH

over the SM point, MH,WR
→∞. This is due to a mild tension in the SM fit of the CKM

parameters, which can be alleviated somewhat by LR contributions to εK , lowering the
minimum χ2 by roughly 5. To illustrate the impact of the LRM we show the different
experimental constraints in the ρ̄− η̄ plane in figure 4, both for the SM case (MH,WR

→
∞) and when using the best fit values for the LR parameters ({MH ,MWR

, t2βsα, α} '
{200 TeV, 21 TeV,−0.01, 3.04}). The figure shows the 68% C.L. (for two parameters, ∆χ2 =
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2.3) bands for several flavor observables described in the previous sections. Each band
was obtained by taking into account the s → u and b → c transitions, see section 5.1
and appendix D, and marginalizing over A and λ. εK is the only observable for which
the change from the SM limit, shown in black, to the best fit point, shown in red, is
noticeable. The shifted εK band allows for better overlap with the preferred regions of
the other observables, leading to a somewhat improved χ2. This change also leads to a
noticeable shift in the best fit point in the ρ̄− η̄ plane, changing from {ρ̄, η̄} = {0.12, 0.37}
in the SM to {ρ̄, η̄} = {0.19, 0.34} at the best fit point in the LRM, shown by the black
and red points, respectively. Although the tension in the SM may not be very severe, the
sizable shifts in the determinations of the CKM parameters due to the LRM do imply that
the impact of fitting the CKM and LR parameters simultaneously can be significant.

Moving on to other possible sign choices, we find very similar allowed regions for the
four cases with sdss = scst = sust = +1, while other combinations of the signs lead to more
stringent constraints and require MWR

& 10TeV at 95% C.L. All sign combinations now
allow for a lower χ2|min compared to the SM, though the corresponding best fit values for
the LR parameters vary. As the limits in the remaining cases are significantly tighter than
those shown in figure 2 we do not further pursue the other sign choices.

6.3 Vud, Vus, and CKM unitarity

Before concluding we briefly discuss the discrepancy between the determinations of Vud
and Vus, from 0+ → 0+ and kaon decays, which recently sparked interest in possible BSM
explanations [170–172]. The inclusion of the SM CKM parameters within our analysis
enables us to consider this anomaly in a consistent manner within the mLRSM and allows
one to answer whether the tension is improved by LR interactions. Before embarking on a
global analysis we first consider a simpler analysis in which we focus on the observables
driving the discrepancy.

The discrepancy arises from a measured value of |VLud|2 + |VLus|2 6= 1, which implies
a violation of unitarity (here VLub is negligible with current sensitivities). Equivalently,
using unitarity, one can obtain VLud from the kaon decays of Eq. (5.4), which give VLud =
[0.9743, 0.9746] at 1σ. This result is in tension with the 0+ → 0+ determination, which, in
the SM, gives |VLud| = 0.97370± 0.00014 [114–116]. Note that this discrepancy worsens if
we would use the Nf = 2 + 1 + 1 lattice results [49] for the form factors in Eq. (5.4) instead
of the 2 + 1 numbers used here.

It is interesting to see whether this discrepancy can be resolved in the mLRSM. Taking
VR = SuVLSd, which holds to good approximation, the above mentioned observables only
involve two combinations of parameters, namely, λ and

ξLR ≡
m2
W

M2
WR

2ξ
1 + ξ2 e

iα . (6.3)

As any imaginary part of ξLR is stringently constrained by EDMs as well as ε′, we will focus
on the case where ξLR is real in what follows.12 The resulting constraints from kaon decays
and 0+ → 0+ transitions are shown in the left panel of figure 5 in blue and red, respectively.

12In addition, allowing for an imaginary part does not significantly lower the minimal χ2.
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Figure 5. The left panel depicts the λ− ξLR plane, with constraints at 90% C.L. (∆χ2 = 4.6) from
kaon decays in blue, those from 0+ → 0+ and pion decays in red, and the combination in black.
The right panel shows the preferred region at 90% and 99% C.L. projected onto the MWR

− ξ plane,
while allowing the SM CKM parameter λ to vary. Both panels assume Im(ξLR) = 0.

The SM prediction is depicted by the black dashed line and it does not fit the two types of
decays very well since it intersects the red and blue regions at different points. Allowing
for a non-zero ξLR improves the fit significantly, as the minimum χ2 decreases from 19 in
the SM to around 3. The improvement is most significant for the sign combinations with
sd = ss, as both the kaon decays and 0+ → 0+ prefer ξLRV ud,us

R ≤ 0.13 The preferred
region in the MWR

− ξ plane due to the combination of d → u and s → u transitions is
shown in the right panel of figure 5, which also shows the preference for finite MWR

and ξ.

Thus, the mLRSM can improve the discrepancy. However, although the kaon and
0+ → 0+ determinations are consistent at 90% C.L. as can be seen from figure 5, the two
contours do not overlap at 1σ. The preferred size of Re ξLR is around [−11, −4.5] · 10−4 at
90% C.L., which implies an upper limit on MWR

of MWR
. 4TeV, as can be seen from the

right panel of figure 5. This value lies below the bound MWR
≥ 5.5TeV even in the presence

of a PQ mechanism. Indeed, once we include other observables discussed in section 5 we
find that while this region does improve the contributions from 0+ → 0+ and kaon decay to
the total χ2, this improvement is offset completely by the increase due to other observables,
mainly εK , which prefer larger values of MWR

. Thus, a solution to the tension in CKM
unitarity can be excluded within the P -symmetric mLRSM considered here. It would be
interesting to see whether other variants, such as the C-symmetric mLRSM, can explain
the discrepancy.

13The options with sd = −ss lead to χ2|min ' 5.
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7 Conclusion

Left-right symmetric models are promising candidates for beyond-the-SM theories that
provide an origin for P violation, neutrino masses, and potentially the strong CP problem.
They also lead to a very rich phenomenology. In this work, we perform a comprehensive
study of the low-energy signatures of the P -symmetric mLRSM. We consider the case where
the model itself accounts for the smallness of θ̄ by requiring small spontaneous CPV phases
(the no-PQ case) as well as the scenario with a Peccei-Quinn mechanism (the PQ case).
The most stringent constraints on the model arise from low-energy β-decay observables,
flavor observables, and EDMs. These, with the exception of EDMs, also play a large role in
determining the CKM parameters so that we are forced to perform a combined fit of CKM
and mLRSM parameters. We do so by including a large number of different processes for
which both accurate predictions as well as measurements exist. An important role is played
by low-energy probes of CP violation. We have used updated SM predictions for εK and ε′,
using both chiral perturbation theory and lattice QCD calculations to determine mLRSM
contributions. We have performed a comprehensive analysis of EDMs in the mLRSM
including not just the neutron EDM, but also more complicated (and more sensitive)
nuclear and atomic systems.

We note that the mLRSM does not follow the flavor structure of minimal flavor violation
(MFV) [173]. MFV requires invariance of the Lagrangian under SU(3)QL×SU(3)u×SU(3)d,
after treating the up- and down-type Yukawa couplings as spurions transforming as Yu,d →
UQLYu,dUu,d. Instead, the mLRSM becomes invariant under a smaller symmetry group,
SU(3)QL × SU(3)QR , if one treats the Yukawa couplings as spurions that transform as
Γ→ UQLΓU †QR and Γ̃→ UQLΓ̃U †QR . This group is less restrictive and allows for additional
interactions to arise unsuppressed by small Yukawa couplings. For example, CHud is
induced proportional to the right-handed CKM matrix, ∼ VR, while MFV would dictate
CHud ∼ Y †uYd. Thus, assuming MFV would lead one to expect this operator to be negligibly
small, while it is actually sizable in the mLRSM and leads to important effects in a number
of observable such as EDMs and ε′. This implies that although the mLRSM is well suited
to an EFT approach, thanks to the large hierarchy in scales MWR

� mW , it does not follow
the flavor assumptions that are often employed in global SMEFT analyses. Due to the large
number of operators appearing in the SMEFT, such works often take MFV as a working
assumption and/or focus on high-energy collider observables [174–176]. The mLRSM is a
clear example of a scenario where such an approach does not apply as it does not follow
MFV, making low-energy measurements very competitive compared to direct searches for
signatures of left-right models, even in a global setting.

Our main findings are summarized in figures 1 and 2 where we show constraints in the
MWR

-MH plane in the no-PQ and PQ case respectively. In the no-PQ case, one obtains
a calculable θ̄ that contributes significantly to dn and dHg forcing α � 1, leading to a
lower bound MWR

& 17TeV at 95% C.L. driven by εK . It will be hard to improve this
bound with low-energy measurements unless theoretical predictions of εK can significantly
be improved. In the PQ case, there is no large contribution to EDMs from θ̄, allowing for
a sizable α. This makes it possible for contributions to εK induced by ∼ sinα to cancel
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terms proportional to the phase in the SM CKM matrix. These cancellations weaken the
constraints and we obtain MWR

& 5.5TeV at 95% C.L., not much higher than direct limits
from colliders [32–34]. This bound can be tightened significantly with next-generation
EDM measurements which would essentially limit the precision with which the different
contributions to εK can cancel each other.

We also investigated whether the P -symmetric mLRSM can help resolve the CKM
anomaly, finding that a relatively light MWR

' 4TeV can in principle improve the tension
found in the SM. Unfortunately, this region of parameter space is already excluded within
a global analysis.

This work focused on low-energy observables. It would be interesting to combine the
global analysis with high-energy searches. Depending on the masses of new fields this can
be done either in the SMEFT framework or has to be done in the full model. In addition,
we have not considered the leptonic sector of the mLRSM. The mLRSM leads to a rich
phenomenology of (semi-)leptonic observables such as the electron EDM [46, 177, 178],
charged-lepton flavor violation [179–181], and neutrinoless double beta decay [10, 13, 45]
that can be included in a future analysis.

In conclusion, we performed a systematic and global analysis of low-energy constraints
on the parity-symmetric minimal left-right symmetric model. We find no significant evidence
that this model is preferred over the Standard Model and set lower bounds on the masses
of right-handed gauge bosons and scalar bosons that are more stringent that direct limits.
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A Solution of VR in the P -symmetric mLRSM

In the P -symmetric limit a solution for VR can be derived from the expressions of the mass
matrices in Eq. (2.8) [60, 61],

Mu =
√

1/2κ(Γ + ξe−iαΓ̃) , Md =
√

1/2κ(ξeiαΓ + Γ̃) . (A.1)

Both mass matrices can generally be diagonalized using two unitary matrices, Lq and Rq,
so that Mq = LqmqR

†
q, where mq are real and diagonal, and the CKM matrices become

VL = L†uLd and VR = R†uRd. If Lq and Rq diagonalize the mass matrices, then the same
will be true for LqSq and RqSq, where Su,d are diagonal matrices of signs, meaning there
will be 25 distinct solutions for VR.
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To determine the number of physical parameters we can note that P symmetry ensures
that the Yukawa matrices, Γ and Γ̃, are hermitian, each having 9 parameters. This allows
us to use a transformation of the form, QL,R → V QL,R, so that Γ→ V †ΓV becomes real
and diagonal, leaving VL,R unchanged [41].14 This rotation can be written as V = V ′S,
where V ′ belongs to SU(3) and S is a diagonal matrix of phases. Since S is not determined
by the demand that V †ΓV = V ′ †ΓV ′ is diagonal, we have the freedom to use the phases in
S to eliminate two of the off-diagonal phases in Γ̃. Since the mass matrices determine the
CKM matrices and the quark masses, this implies that mq and VL,R are a function of ξ, α,
the three parameters in V †ΓV , and the seven remaining parameters in V †Γ̃V . Conversely,
this means that VR and the 10 parameters in V †ΓV and V †Γ̃V can be solved in terms of ξ,
α, the 6 quark masses, and the 4 SM CKM parameters in VL.

The above was used in refs. [60, 61] to obtain a solution for VR in terms of ξ, α, VL, and
mq. These references also obtained analytical approximations in terms of an expansion in
x ≡ tan 2β sinα. Here we follow a similar approach as refs. [60, 61] and use the hermiticity
of Γ and Γ̃ to rewrite Eq. (A.1) as,

UumuUu −mu = −ix
[
ξeiαmu − VLmdV

†
R

]
,

UdmdUd −md = ix
[
ξe−iαmd − V †LmuVR

]
,

VR = UuVLUd , Uq = L†qRq . (A.2)

These equations are useful as they allow one to obtain Uq order by order after expanding
both sides in terms of x,

VR =
∑
n

xnV
(n)
R , Uq =

∑
n

xnU (n)
q , (A.3)

in addition, we write ξeiα = ξ cosα+ i1−ξ2

2 x. Collecting terms at each order in x one can
then obtain U (n)

q from the first two lines in Eq. (A.2), which now only depend on the lower
order terms, V (m)

R and U
(m)
q , with m < n. The third equation in Eq. (A.2) then allows

one to solve the n-th order in VR in terms of V (m)
R and U (m)

q . Thus, starting with the x0

solution, V (0)
R = SuVLSd and U (0)

q = Sq, any higher order can be obtained iteratively. This
procedure reproduces the analytical approximations of refs. [60, 61]. In our analysis we use
expressions for VR obtained in this way and take into account terms up to and including x4.

A.1 Region of validity

Eq. (A.1) does not allow for a solution for all values of ξ = tβ and α. A necessary condition
was derived in refs. [41, 60, 61], and can roughly be stated as |x| . 2mb/mt. This condition
can be obtained by considering the largest diagonal elements of the mass matrices, which
we will take to be the 33 entry,∣∣∣∣ (MuM

†
u

)
33

∣∣∣∣ ≥ m2
t −

∣∣∣∣ (MuM
†
u

)
31

+
(
MuM

†
u

)
32

∣∣∣∣ & m2
t − 2mbmt ,[(

Md −M †d
)
Mu

]
33

. 2mbmt , (A.4)
14This transformation affects the matrices needed to diagonalize the mass matrices as Lq → V †Lq and

Rq → V †Rq, while leaving the combinations VL = L†uLd and VR = R†uRd invariant.
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where the first inequality in the first line follows from eigenvalue equation for MuM
†
u.

The second inequality can be derived by using that, for i 6= j, the matrix
(
MuM

†
u

)
ij

can be expressed in terms of MdM
†
d , MuM

†
d , and MdM

†
u, and the fact that | (Mu,d)ij | ≤∑

kmuk,dk . mt,b. Using the above, one can derive the following inequality in the basis
where Γ is diagonal∣∣∣∣∣∣

[(
Md −M †d

)
Mu

]
33[

MuM
†
u − t2βMdM

†
d

]
33

∣∣∣∣∣∣ = 2
∣∣∣∣∣ tβ sinα(1 + tβze

−iα)
1 + 2ztβ(1− t2β) cosα− t4β

∣∣∣∣∣ . 2mb

mt
, (A.5)

where z ≡ Γ33/Γ̃33. Varying over the parameter z, gives a constraint that is very similar to
the one discussed in ref. [41] and numerically close to |x| . 2mb/mt ' 0.036. In practice,
we consider the range |x| ≤ 0.03 within which our approximate solutions of VR agrees with
higher order solution to within . 10%.

Finally, we can see that for values of ξ = tβ → 1 the Yukawa matrices have to become
large in order to explain the hierarchy between the up-type and down-type masses. In
particular

1
v2 Tr

(
MuM

†
u −MdM

†
d

)
= 1

2
(
c2
β − s2

β

)
Tr
(
Γ2 − Γ̃2

)
' m2

t −m2
b

v2 , (A.6)

which implies that Γ and/or Γ̃ have to become large in the tβ → 1 limit. To avoid such
large couplings we follow ref. [41] and restrict |tβ | < 0.8 in our fits.

B Mass eigenstates of the Higgs fields

The spontaneous breaking of SU(2)L,R implies that the scalar fields, ∆L,R and φ, should
involve two neutral and two singly-charged would-be-Goldstone bosons. The remaining
components are physical and make up six neutral, two singly-charged, and two doubly
charged fields. The masses of these fields generally have lengthy expressions, we therefore
only give approximate expressions for the P -symmetric case (setting some parameters in
the Higgs potential to zero, βi = vL = 0) and keep linear terms in κ/vR and ξ ≡ κ′/κ. With
these approximations the would-be-Goldstone bosons, that are absorbed by the WL,R and
ZL,R bosons, can be written as

G+
L =φ+

1 − ξe
−iαφ+

2 , G±R = δ+
R −

κ√
2vR

φ+
2 ,

G0
Z =
√

2Im (φ0∗
1 + ξe−iαφ0

2) , G0
Z′ =

√
2Im δ0

R . (B.1)

The masses of the remaining (physical) states are shown in table 4, where the conventions
for the parameters in the Higgs potential can be found in ref. [38].

We finally discuss the masses and mixings of the φ fields in more detail, as they play a
role in section 3. Writing the bidoublet in terms of two SU(2)L doublets, φ = (φ1, φ2), the
breaking of SU(2)R, gives rise to the following mass terms,

L ⊃ −(φ̃†1, φ
†
2)
(

v2
R
α1
2 − µ

2
1 2µ2

2e
−iδµ − α2v

2
Re

iδ2

2µ2
2e
iδµ − α2v

2
Re
−iδ2 α1+α3

2 v2
R − µ2

1

)(
φ̃1
φ2

)
. (B.2)
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Here αi, δi, and µi are parameters of the Higgs potential, with the notation as in ref. [54].
The above terms are the O(v2

R) terms for the general potential in LR models, which include
the C and P symmetric cases (the latter has δµ = 0). In principle the above mass matrix has
2 nonzero eigenvalues, meaning that both doublets would obtain O(vR) masses. However,
demanding that the Higgs potential resides in a minimum, ∂VH/∂{vR, κ(′), α} = 0, give
rises to,

µ2
1 −

v2
R

2 α1 ≈ −
v2
R

2
ξ2

1− ξ2α3 , 2µ2
2e
−iµ2 − α2v

2
Re

iδ2 = 1
2
ξα3v

2
R

1− ξ2 e
−iα , (B.3)

so that the mass terms become

L ⊃ −(φ̃†1, φ
†
2) α3v

2
R

2(1− ξ2)

(
ξ2 ξe−iα

ξeiα 1

)(
φ̃1
φ2

)
, (B.4)

which can be diagonalized as in Eq. (3.3)(
φ̃1
φ2

)
=
(
−cβ sβe

−iα

sβe
iα cβ

)(
ϕ

ϕH

)
, (B.5)

where tβ = sβ/cβ = ξ and the signs are chosen such that 〈ϕ〉 = +
√
κ2 + κ′ 2/

√
2 = +v/

√
2.

The mass eigenstates then have the following eigenvalues, m2
ϕSM

= 0 and M2
H = α3v2

R
2

1+ξ2

1−ξ2 ,
which implies that the SM doublet only acquires an O(κ2) mass after EWSB.

In the Higgs mass basis the Yukawa interactions of Eq. (2.3) then take the following
(SU(2)L-invariant) form,

−LY =
√

2
v
Q̄L

[
ϕ̃Mu + 1

1− ξ2 ϕ̃H
(
Md(1 + ξ2)− 2ξeiαMu

)]
UR

+
√

2
v
Q̄L

[
ϕMd + 1

1− ξ2ϕH
(
Mu(1 + ξ2)− 2ξe−iαMd

)]
DR + h.c. (B.6)

In the mass basis for the quarks the neutral currents become (up to O(ξ2) terms) [38]

LN = ŪL

[
Yu(h0 − iG0

Z) + (H0
1 − iA0

1)(VLYdV †R − 2ξYueiα)
]
UR

+ D̄L

[
Yd(h0 + iG0

Z) + (H0
1 + iA0

1)(V †LYuVR − 2ξYde−iα)
]
DR + h.c. , (B.7)

whereas the charged scalars give rise to the following interactions,

LC =
√

2Ū
[
(YuVR − 2ξe−iαVLYd)PRH+

2 − (VRYd − 2ξe−iαYuVL)PLH+
2

+ (YuVLPL − VLYdPR)G+
L

]
D + h.c. , (B.8)

where Yu,d are diagonal matrices of Yukawas, (Yq)ii = mqi/v.
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Mass eigenstate Mass squared

Neutral scalars

h0 =
√

2Re (φ0∗
1 + ξe−iαφ0

2) 1
2α3v

2
Rξ

2 + (2λ1 − 1
2α

2
1/ρ1)κ2

H0
1 =
√

2Re (φ0
2 − ξeiαφ0∗

1 ) 1
2α3v

2
R

A0
1 =
√

2Im (φ0
2 − ξeiαφ0∗

1 ) 1
2α3v

2
R√

2Re δ0
R 2ρ1v

2
R√

2Re δ0
L

1
2(ρ3 − 2ρ1)v2

R√
2Im δ0

L
1
2(ρ3 − 2ρ1)v2

R

Singly-charged scalars

H+
2 = φ+

2 + ξeiαφ+
1 + κ√

2vR
δ+
R

1
2α3v

2
R

δ+
L

1
2(ρ3 − 2ρ1)v2

R + 1
4α3κ

2

Doubly-charged scalars

δ++
R 2ρ2v

2
R

δ++
L

1
2(ρ3 − 2ρ1)v2

R + 1
2α3κ

2

Table 4. The physical Higgs mass eigenstates and their masses for the P -symmetric potential,
restricted to the βi = vL = 0 case. Only linear terms in κ/vR and ξ ≡ κ′/κ have been kept [38, 182,
183]. The definitions of the parameters from the Higgs potential can be found in [38].

C Matching to the SMEFT in the Warsaw basis

In section 3 we matched the mLRSM onto the SMEFT in a basis that is convenient for the
discussion of low-energy observables. Here, we report the conversion between our basis and
the standard “Warsaw basis” of ref. [72]. We first note that ref. [72] as well as [81, 184, 185]
use a different sign convention for the gauge couplings, g1,2,3 in their notation, and the
Levi-Civita tensor. Explicitly,

g′ = −g1 , g = −g2 , gs = −g3 , εαβµν |Here = εαβµν |[72] . (C.1)

With these identifications, our definition of the right-handed current operator CHud agrees
with that of ref. [72]. For the four-quark vector and scalar operators, we find[

C
(1)
ud

]
prst

= −
[
C2RR + 1

Nc
C1RR

]
srpt

,[
C

(8)
ud

]
prst

= −2 [C1RR]srpt ,[
C(1)
qu

]
prst

=
[
C1 qu + 1

Nc
C2,qu

]
prst

,[
C(8)
qu

]
prst

= 2 [C2,qu]prst ,[
C

(1)
qd

]
prst

=
[
C1 qd + 1

Nc
C2,qd

]
prst

,
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[
C

(8)
qd

]
prst

= 2 [C2,qd]prst ,[
C

(1)
quqd

]
prst

=
[
C1 quqd + 1

Nc
C2,quqd

]
prst

,[
C

(8)
quqd

]
prst

= 2 [C2,quqd]prst . (C.2)

Note that a Fierz relation involving Dirac matrices was used to obtain the first two
identities, so that they strictly speaking only hold at tree-level. For d 6= 4 the left- and
right-hand sides will differ by evanescent operators, which can impact the finite parts
of loop-level expressions. In practice we used the Oi RR operators when computing the
matching contributions described in section 3, which may differ from the matching one
would obtain using the SMEFT basis.

The dipole operators in Eq. (3.8) agree with the definitions of ref. [72], modulo factors
of the gauge couplings,

CuW = − g√
2

ΓuW , CuB = − g′√
2

ΓuB , CuG = − gs√
2

Γug ,

CdW = − g√
2

ΓdW , CdB = − g′√
2

ΓdB , CdG = − gs√
2

Γdg . (C.3)

C.1 Matching to the LEFT in the basis of ref. [1]

Similarly, below the electroweak scale, we matched onto bases that are traditionally used in
the discussion of various observables, such as meson-antimeson oscillations or B → Xsγ. A
complete basis for the description of low-energy observables was established in ref. [1]. Here
we give the conversion between the operators introduced in section 3.3 and refs. [1, 186].
For the gauge couplings and epsilon tensor we now have,

gs = −g|[1] , e|Here = e|[1] , εαβµν |Here = −εαβµν |[1] . (C.4)

For the four-quark operators, we find[
LV 1LL
ud

]
prst

= −
[
C2LL + 1

Nc
C1LL

]
srpt

,[
LV 8LL
ud

]
prst

= −2 [C1LL]srpt ,[
LV 1RR
ud

]
prst

= −
[
C2RR + 1

Nc
C1RR

]
srpt

,[
LV 8RR
ud

]
prst

= −2 [C1RR]srpt ,[
LV 1LR
uddu

]
prst

= −
[
C∗1LR + 1

Nc
C∗2LR

]
rpts

,[
LV 8LR
uddu

]
prst

= −2 [C∗2LR]rpts ,[
LV 1LR
dd

]
prst

=
[
C4 + 1

Nc
C5

]
prst

,[
LV 8LR
dd

]
prst

= 2 [C5]prst ,

– 48 –



J
H
E
P
1
1
(
2
0
2
1
)
1
2
7

Decay constant Form Factor
fπ 130.2± 0.8MeV fKπ+ (0) 0.9677± 0.0027

fK/fπ 1.1917± 0.0037
fD 209.0± 2.4MeV fDπ+ (0) 0.666± 0.029
fDs 248.0± 1.6MeV fDK+ (0) 0.747± 0.019
fB 192.0± 4.3MeV FD(1) 1.035± 0.040
fBs 228.4± 3.7MeV FD∗(1) 0.906± 0.004± 0.012

Table 5. Pseudoscalar meson decay constants and form factors as determined from lattice QCD
calculations. Here we use the FLAG lattice averages with nf = 2 + 1 [49].

[
LS1RR
ud

]
prst

=
[
C1,quqd + 1

Nc
C2,quqd

]
prvt

[V ∗L ]vs ,[
LS8RR
ud

]
prst

= 2 [C2,quqd]prst [V ∗L ]vs ,[
LS1RR
uddu

]
prst

= −
[
C1,quqd + 1

Nc
C2,quqd

]
vtpr

[V ∗L ]vs ,[
LS8RR
uddu

]
prst

= −2 [C2,quqd]vtpr [V ∗L ]vs , (C.5)

while, for the dipole operators,

[Luγ ]pr = −eQu2 murC
pr
γu , [LuG]pr = −gs2 murC

pr
gu ,

[Ldγ ]pr = −eQd2 mdrC
pr
γd , [LdG]pr = −gs2 mdrC

pr
gd . (C.6)

Finally, the Weinberg operator in LEFT is given in terms of the coefficient in Eq. (3.14) by

LG̃ = −gs3 CG̃ . (C.7)

D Observables

In this Appendix we give the expressions for the observables that are included in our χ2

function, but were not discussed in the main text.

D.1 Leptonic and semileptonic decays

u→ d and u→ s transitions. In addition to the lifetime of superallowed β emitters,
the π → µνµ, K → µνµ and K → πlνl branching ratios, which were discussed in section 5.1,
we use the triple correlation 〈 ~J 〉 · (~pe× ~pν), where ~J is the neutron or Σ baryon polarization,
which is sensitive to time-reversal violation. The mLRSM contributions to this correlation
in neutron decay and Σ− → ne−ν̄ can be written as [126],

Dn = 4gA
1 + 3g2

A

Im v2CudHud
2VLud

' 0.87 Im v2CudHud
2VLud

,

DΣ = 4gAΣn
1 + 3g2

AΣn
Im v2CusHud

2VLus
' 1.01 Im v2CusHud

2VLus
, (D.1)
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where gA = 1.27, and gAΣn = 0.340± 0.017 [119] are the axial coupling of the nucleon and
that of the Σ to the neutron. The SM contribution, as well as contamination from fake
T -odd signals from final-state interactions, are negligible with current experimental accuracy
(see ref. [187] for a more detailed discussion). Current measurements give [127, 128]

Dn = (−0.96± 1.89± 1.01) · 10−4 , DΣ = 0.11± 0.10 . (D.2)

c→ d transitions. Here we use we the leptonic and semileptonic decays of the D mesons,
D+ → µ+νµ and D → πlνl, to constrain the axial and vector couplings, respectively. The
experimental input is [119, 133]

D → πlνl : fDπ+ (0)
∣∣∣∣∣VLcd + v2

2 C
cd
Hud

∣∣∣∣∣ = 0.1426± 0.0019 ,

D+ → µ+νµ, τ
+ντ : fD

∣∣∣∣∣VLcd − v2

2 C
cd
Hud

∣∣∣∣∣ = 45.91± 1.05MeV . (D.3)

c→ s transitions. Analogously to the c→ d case, the leptonicDs decay and semileptonic
decay of the D to kaons can be used to constrain c→ s transitions. We use [119, 133]

D → Klνl : fDK+ (0)
∣∣∣∣∣VLcs + v2

2 C
cs
Hud

∣∣∣∣∣ = 0.7226± 0.0034 ,

D+
s → µ+νµ, τ

+ντ : fDs

∣∣∣∣∣VLcs − v2

2 C
cs
Hud

∣∣∣∣∣ = 250.9± 4.0MeV . (D.4)

b→ c transitions. The vector component of the charged Wcb current is constrained by
the semileptonic decay B → Dlνl. For the axial component, the purely leptonic decay of
the Bc meson has not yet been observed, while the decay B → D∗lνl depends on both the
vector and axial current. In the zero-recoil limit, when w = v · v′ = 1, where v and v′ are
the B and D mesons four-velocities, only the axial contribution survives [188]. Using the
HFLAV averages [133], we can write

B → Dlνl : ηEWFD(1)|VLcb + v2

2 C
cb
Hud| = (42.00± 0.45± 0.89) · 10−3 ,

B → D∗lνl : η′EWFD∗(1)|VLcb −
v2

2 C
cb
Hud| = (35.27± 0.11± 0.36) · 10−3 , (D.5)

where ηEW = 1.012 ± 0.005 and η′EW = 1.0066 ± 0.0050 [119, 189–191] are electroweak
corrections and FD(1) and FD∗(1) denote the form factors, evaluated at w = 1, which are
given in table 5.

Apart from these exclusive decays, VLcb and CcbHud can also be constrained through
the inclusive decays B̄ → Xclν̄l. Neglecting power corrections of order O(ΛQCD/mb), the
inclusive semileptonic width into charmed final states is given by

Γ(B → Xclν) = G2
Fm

5
b |VLcb|2

192π3

1 +
∣∣∣∣∣v2CcbHud

2VLcb

∣∣∣∣∣
2
(1− 8ρ+ 8ρ3 − ρ4 − 12ρ2 log ρ

)

−4mc

mb
Re
(
v2CcbHud
2VLcb

) (
1 + 9ρ− 9ρ2 − ρ3 + 6ρ(1 + ρ) log ρ

)]
, (D.6)
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where ρ = m2
c/m

2
b . We then set constraints by using the PDG average [119],

B → Xclν : |V eff
cb | = (42.2± 0.8) · 10−3 , (D.7)

where |V eff
cb |2 = |VLcb|2 Γ(B → Xclν)/ΓSM(B → Xclν).

The limits obtained from these inclusive decays and B → D∗lνl should be interpreted
as an order-of-magnitude constraint only. The reason is that Eq. (D.6) does not include
power corrections [192–195], while both Eqs. (D.5) and (D.6) rely on SM fits to the leptonic
and hadronic moments of the decay distributions that do not include modifications due to
CcbHud. For a recent discussion in the case of B → D∗lνl, see ref. [196]. A complete analysis
that properly takes these issues into account is beyond the scope of the current work and
we will use Eq. (D.5) and (D.6) to estimate the limits from the exclusive and inclusive
measurements, while referring to refs. [197, 198] for a more detailed discussion.

b→ u transitions. In the case of b→ u transitions, the leptonic channel B+ → τ+ντ
constrains the axial current, while the vector current is probed by B → πlνl. In what
follows we will use the HFLAV average of the BaBar and Belle results, Br(B+ → τν) =
(1.06± 0.19) · 10−4 [133], and we employ the FLAG extraction for the semileptonic case [49],

B → πlνl : |VLub + v2

2 C
ub
Hud| = (3.74± 0.14) · 10−3 ,

B+ → τ+ντ : fB|VLub −
v2

2 C
ub
Hud| = (0.77± 0.12) MeV, (D.8)

where the decay constant, fB, is given in table 5.
In addition, inclusive decays lead to the following constraint [119],

B → Xulν :

√
|VLub|2 + |v

2

2 C
ub
Hud|2 = (4.25± 0.12+0.15

−0.14 ± 0.23) · 10−3 . (D.9)

These inclusive decays suffer from similar problems as those in the b→ c transitions; ideally,
power corrections should be included [199, 200] and the leptonic spectrum should be refitted
to take into account CubHud contributions. However, such an analysis is beyond the scope of
the current work, and we estimate constraints from inclusive decays by using Eq. (D.9).

Finally, the measurements of Λb baryon decays, in particular the ratio Br(Λ0
b →

pµ−ν̄)q2>15 GeV/Br(Λ0
b → Λ+

c µ
−ν̄)q2>7 GeV, are sensitive to both the b → u and b → c

charged currents. Here we use the form factors from the lattice QCD calculation of ref. [201]
and obtain the following partially integrated decay widths,

Γ(Λ0
b → pµ−ν̄)q2>15 GeV = 4.17 ps−1 |VLub + v2

2 C
ub
Hud|2 + 8.17 ps−1 |VLub −

v2

2 C
ub
Hud|2

± σ(p)
stat ± σ

(p)
syst ,

Γ(Λ0
b → Λ+

c µ
−ν̄)q2>7 GeV = 1.41 ps−1 |VLcb + v2

2 C
cb
Hud|2 + 6.99 ps−1 |VLcb −

v2

2 C
cb
Hud|2

± σ(Λ+
c )

stat ± σ
(Λ+
c )

syst , (D.10)

– 51 –



J
H
E
P
1
1
(
2
0
2
1
)
1
2
7

where the lattice uncertainties are given by

(σ(p)
stat ps)2 = 0.10

∣∣∣∣∣VLub+ v2

2 C
ub
Hud

∣∣∣∣∣
4

+0.33
∣∣∣∣∣VLub− v2

2 C
ub
Hud

∣∣∣∣∣
4

+0.16

∣∣∣∣∣∣V 2
Lub−

(
v2

2 C
ub
Hud

)2
∣∣∣∣∣∣
2

,

(σ(p)
syst ps)2 = 0.10

∣∣∣∣∣VLub+ v2

2 C
ub
Hud

∣∣∣∣∣
4

+0.44
∣∣∣∣∣VLub− v2

2 C
ub
Hud

∣∣∣∣∣
4

+0.050

∣∣∣∣∣∣V 2
Lub−

(
v2

2 C
ub
Hud

)2
∣∣∣∣∣∣
2

,

(σ(Λ+
c )

stat ps)2 = 0.0023
∣∣∣∣∣VLcb+ v2

2 C
cb
Hud

∣∣∣∣∣
4

+0.017
∣∣∣∣∣VLcb− v2

2 C
cb
Hud

∣∣∣∣∣
4

+0.0052

∣∣∣∣∣∣V 2
Lcb−

(
v2

2 C
cb
Hud

)2
∣∣∣∣∣∣
2

,

(σ(Λ+
c )

syst ps)2 = 0.0053
∣∣∣∣∣VLcb+ v2

2 C
cb
Hud

∣∣∣∣∣
4

+0.11
∣∣∣∣∣VLcb− v2

2 C
cb
Hud

∣∣∣∣∣
4

+0.0027

∣∣∣∣∣∣V 2
Lcb−

(
v2

2 C
cb
Hud

)2
∣∣∣∣∣∣
2

. (D.11)

We then set constraints by combining this theory prediction with the experimental determi-
nation [119, 202],

Br(Λ0
b → pµ−ν̄)q2>15 GeV

Br(Λ0
b → Λ+

c µ−ν̄)q2>7 GeV
= (0.92± 0.04± 0.07) · 10−2 . (D.12)

D.2 ∆B = 1 and ∆S = 1 processes

Here we consider two types of processes, namely decays induced at tree level through charged
currents, and loop-induced flavor-changing neutral currents. The decay B → J/ψKS is in
the former category and is important in the determination of the SM CKM elements. In
particular, it allows for a precise determination of the phase β ' Arg (−VL td), while it is
not expected to be very sensitive to mLRSM contributions.

Instead, ∆B = 1 and ∆S = 1 FCNC processes such as B → Xs,d γ and KL → π0e+e−

lead to stringent constraints on the elements of CHud involving the top quark, as they
benefit from an enhancement factor of mt/mb compared to the SM contributions.

The theoretical expressions for ∆B = 1 FCNC observables are usually written in terms
of the C(′)

7,8 coefficients, see e.g. refs. [203, 204], which are related to the couplings of the
dipole operators in Eq. (3.15) as follows

C7(mW ) = − 4π2Qd
VL tbV

∗
L tq

v2Cqbγd , C ′7(mW ) = − 4π2Qd
VL tbV

∗
L tq

mq

mb

(
v2Cbqγd

)∗
,

C8(mW ) = 4π2

VL tbV
∗
L tq

v2Cqbgd , C ′8(mW ) = 4π2

VL tbV
∗
L tq

mq

mb

(
v2Cbqgd

)∗
. (D.13)

Below we closely follow the analysis of ref. [48] and focus on the B → Xs,dγ branching
ratios, the CP asymmetries in inclusive B → Xd,sγ decays, and in the exclusive channel
B → K∗0γ. We summarize the relevant experimental results [119, 133] in table 1.
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D.2.1 B → J/ψKS

In the SM, the time-dependent CP asymmetry in B → J/ψKS is sensitive to the angle
β = Arg

(
− VL cdV

∗
L cb

VL tdV
∗
L tb

)
. The CP asymmetry is defined as

Γ(B̄ → J/ψKS)− Γ(B → J/ψKS)
Γ(B̄ → J/ψKS) + Γ(B → J/ψKS)

= SJ/ψKS sin(∆mdt) + CJ/ψKS cos(∆mdt) . (D.14)

Here
SJ/ψKS =

2ImλJ/ψKS
1 + |λJ/ψKS |2

, λJ/ψKS =
(
q

p

)
Bd

ĀJ/ψK
AJ/ψK

, (D.15)

where (q/p)Bd is related to the mixing parameters in B0
d − B̄0

d oscillations, and the ratio of
amplitudes is given by

ĀJ/ψK
AJ/ψK

=
(
p

q

)
K

〈J/ψK̄0|Hw|B̄0
d〉

〈J/ψK0|Hw|B0
d〉
. (D.16)

In both the K − K̄ and B − B̄ systems, the ratio |q/p| can be shown to be very close to 1
without the need for additional theoretical assumptions, so that we have [205](

q

p

)
Bd

= exp(i arg(M∗12)Bd) ,
(
q

p

)
K

= exp(i arg(M∗12)K) , (D.17)

up to very small corrections. In the SM, these phases can be expressed in terms of ratios
of CKM elements, while the corrections to (M12)Bd,K within the mLRSM are discussed in
sections 5.3.1 and 5.3.2.

In addition, there are corrections to the ratio of the rJ/ψK = 〈J/ψK̄0|Hw|B̄0
d〉

〈J/ψK0|Hw|B0
d
〉 . Within

the SM, these transitions are mediated by the tree-level charged-current operators, Ci LL.
In this case, the non-perturbative matrix elements drop out in the ratio leaving only CKM
elements. Within the mLRSM there are additional contributions from the Ci RR and Ci LR
operators. Expanding the ratio to first order in 1/M2

WR
we have,

rJ/ψK =−VLcbV
∗
Lcs

V ∗LcbVLcs

[
1−2iIm

(
Cbccs1LR+Ccsbc1LR+rLR(Cbccs2LR+Ccsbc2LR)+Cbccs1RR+rLLCbccs2RR

Cbccs1LL+rLLCbccs2LL

)]
,

rLL = 〈J/ψK̄0|s̄αLγµc
β
L c̄

β
Lγ

µbαL|B̄0
d〉

〈J/ψK̄0|s̄LγµcL c̄LγµbL|B̄0
d〉
, rLR = 〈J/ψK̄0|s̄αLγµc

β
L c̄

β
Rγ

µbαR|B̄0
d〉

〈J/ψK̄0|s̄LγµcL c̄RγµbR|B̄0
d〉
, (D.18)

where the matrix elements and the Wilson coefficients are to be evaluated at the same
scale. As the ratios of matrix elements, rLL,LR, are currently unknown, the non-standard
contributions to rJ/ψK are hard to estimate. However, these terms do not come with any
enhancement factors. In addition, within the P -symmetric scenario, the phases of Ci LR,RR
are expected to be closely aligned to those of Ci LL due to the relation between VL and
VR, Eq. (2.10), and the fact that α is stringently constrained by CP-violating ∆F = 0
observables. We therefore expect these contributions to be below the experimental sensitivity
for MWR

& 1TeV and neglect them in our analysis. We thus use rJ/ψK = −VL cbV
∗
L cs

V ∗
L cb

VL cs

in combination with Eqs. (D.15) and (D.16), which we compare with the experimental
value [133]

SJ/ψKS = 0.695± 0.019 . (D.19)
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D.2.2 The B → Xd,sγ branching ratio
For the B → Xd,sγ branching ratios, we employ the expressions derived in ref. [206] rescaled
by the SM predictions of refs. [207–209],

BR (B→Xqγ) = rq
N
100

∣∣∣V ∗LtqVLtb∣∣∣2
|VLcb|2 + |v2

2 C
cb
Hud|2

[
a+a77(|R7|2 + |R′7|2)+ar7 ReR7 +ai7 ImR7

+a88(|R8|2 + |R′8|2)+ar8 ReR8 +ai8 ImR8 +aεε|εq|2 +arε Re εq
+aiε Im εq+ar87 Re(R8R

∗
7 +R′8R

′ ∗
7 )+ai87 Im(R8R

∗
7 +R′8R

′ ∗
7 )

+ar7εRe(R7ε
∗
q)+ai7ε Im(R7ε

∗
q)+ar8εRe(R8ε

∗
q)+ai8ε Im(R8ε

∗
q)
]
, (D.20)

where R7,8 = C7,8(mt)
CSM

7,8 (mt)
, R′7,8 = C′7,8(mt)

CSM
7,8 (mt)

, CSM
7 (mt) = −0.189, and CSM

8 (mt) = −0.095 and
we neglect the SM contributions to C ′7,8 which are suppressed by mq/mb. In addition,
N = 2.567(1 ± 0.064) · 10−3, while rq are factors that rescale the above expression to
the SM predictions of refs. [207–209] for which we use rs = 3.36

3.55 and rd = 1.73
1.47 . Finally,

εq = V ∗LuqVLub
V ∗L tqVL tb

and the coefficients aij can be found in ref. [206]. We applied the expressions
valid for a cut on the photon energy of Eγ > 1.6GeV, which, for B → Xd γ, requires
extrapolating the branching ratio quoted in ref. [133], as discussed in ref. [208].

To set constraints we compare the branching ratios in Eq. (D.20) with the current
experimental world averages [119, 133], shown in table 1. To take into account theoretical
uncertainties, we follow refs. [203, 204] and use the following theory errors σd = 0.22

1.73BR(B →
Xdγ) and σs = 0.23

3.36BR(B → Xsγ), which are added in quadrature to the experimental ones.

D.2.3 The B → Xd,sγ CP asymmetry
The B → Xsγ CP asymmetry provides a probe of the phase of the tb element of CHud. We
employ the expression derived in ref. [210],

ACP (B → sγ)
π

≡ 1
π

Γ(B̄ → Xsγ)− Γ(B → Xs̄γ)
Γ(B̄ → Xsγ) + Γ(B → Xs̄γ)

≈
[(40

81 −
40
9

Λc
mb

)
αs
π

+ Λc17
mb

]
Im C2

C7
−
(4αs

9π + 4παs
Λ78
3mb

)
Im C8

C7

−
(Λu17 − Λc17

mb
+ 40

9
Λc
mb

αs
π

)
Im
(
εs
C2
C7

)
, (D.21)

where the Wilson coefficients should be evaluated at the factorization scale µb '
2GeV and C2 denotes the coefficient of the SM charged-current operator Osc cb1LL, C2 =
Csc cb1LL/(2

√
2GFVLcbV ∗Lcs). We use the following values for the SM parts of these coeffi-

cients [210],

CSM
2 (2 GeV) = 1.204 , CSM

7 (2 GeV) = −0.381 , CSM
8 (2 GeV) = −0.175 . (D.22)

Furthermore, Λc ' 0.38GeV, while the three hadronic parameters, Λu,c
17 and Λ78, are

estimated to lie in the following ranges [210],

Λu17 ∈ [−0.33, 0.525]GeV, Λc17 ∈ [−0.009, 0.011]GeV, Λ78 ∈ [0.017, 0.19]GeV .
(D.23)

We compare the above expressions with the experimental result in table 1.
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D.2.4 The B → K∗0γ CP asymmetry

In addition we consider the time-dependent CP asymmetry in B → K∗0γ decays

Γ(B̄ → K̄∗0γ)− Γ(B → K∗0γ)
Γ(B̄ → K̄∗0γ) + Γ(B → K∗0γ)

= SK∗γ cos(∆mdt) + CK∗γ sin(∆mdt) , (D.24)

where we focus on SK∗γ , which can be expressed as

SK∗γ = 2 ImλK∗γ
1 + |λK∗γ |2

, λK∗γ = q

p

A(B̄ → K̄∗0γ)
A(B → K∗0γ) , (D.25)

where the ratio q
p =

√
M∗12
M12

arises from the phase of the Bd − B̄d mixing amplitude M12
discussed in section 5.3.1. This asymmetry is generated by the electromagnetic dipole
operators, C7 and C ′7, at leading order and vanishes as C ′7 → 0. The latter coefficient is
suppressed by ms/mb in the SM, while it is enhanced in the presence of CHud, making it
a probe of right-handed currents. Using the fact that the largest BSM modifications will
arise from the enhanced C ′7 contributions we can approximate the ratio q/p by its SM value,
q/p ' (VL tbV ∗L td)/(V ∗L tbVL td). The leading-order expression is then given by [204, 211],

SK∗γ =
2 Im

(
VL tbV

∗
L td

V ∗
L tb

VL td

VL tbV
∗
L ts

V ∗
L tb

VL ts
C7C

′
7

)
|C7|2 + |C ′7|2

, (D.26)

while the SM prediction is rather small [212, 213]

SSM
K∗γ = (−2.3± 1.6) · 10−2 . (D.27)

The experimental value for SK∗γ is given in table 1.

D.2.5 Corrections to the B meson widths

The absorptive part of the box diagrams that induce B − B̄ oscillations give rise to the Bq
meson widths. The corrections due to WL −WR mixing were computed in ref. [48], and are
given by

Γ(q)
12 (ξ) = −1

2
G2
Fm

2
bmBqf

2
Bq

π

√
z
(
λ(q) 2
c

(√
1− 4z − (1− z)2)− λ(q)

c λ
(q)
t (1− z)2

)
×
[([2

3B1 −
5
6B2R

]
ξcb
VLcb

+ 1
3B5

(
R+ 3

2

)
ξ∗cq
V ∗Lcq

)
η11LLη11LR

+
([2

3B1 + 1
6B3R

]
ξcb
VLcb

+B4

(
R+ 1

6

)
ξ∗cq
V ∗Lcq

)

×
(
η11LLη21LR + η21LLη11LR + 3 η21LLη21LR

)]
, (D.28)

where z ≡ m2
c/m

2
b , λ

(q)
i = VL ibV

∗
L iq, and ξij ≡ v2

v2
R

ξeiα

1+ξ2VR ij . The bag factors, Bi, are
again given in table 2, where the B1 factors are related to the RG-invariant definition in
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table 2 by an RG factor, B1(mb) = B̂Bd,s/1.517 for the Bd,s systems [49]. The η factors
describe the RGE evolution of the four-fermion operators between mW and mb, through
Ci LL(LR)(mb) = ηijLL(LR)Cj LL(LR)(mW ). Explicitly we have

η11LL = 1
2
(
η6/23 + η−12/23) , η11LR = η3/23 ,

η21LL = 1
2
(
η6/23 − η−12/23) , η21LR = 1

3
(
η−24/23 − η3/23) , (D.29)

where η = αs(mW )/αs(mb).
Additional contributions arise from diagrams involving Ci RR, due to WR exchange

Γ(q)(Ci RR) = −1
4
z

2π
√

1− 4z mBqf
2
Bqm

2
b

{
B4

(
R(µ) + 1

6

)
Cqccb1RRC

qccb
1LL

+1
3B5

(
R+ 3

2

)(
Cqccb2RRC

qccb
1LL + Cqccb1RRC

qccb
2LL +NcC

qccb
2RRC

qccb
2LL

)}
. (D.30)

The real part of these contributions to Γ12 can be constrained by the width difference
between the mass eigenstates, whereas aqfs is sensitive to the imaginary part [214],

∆Γ(q) = 4
Re
(
Γ(q)∗

12 M
(q)
12
)

∆mq
, aqfs = 1−

∣∣∣∣qp
∣∣∣∣2 = −Im

( Γ(q)
12

M
(q)
12

)
. (D.31)

These expressions only depend on the ratio of Γ(q)
12 /M

(q)
12 and ∆mq = 2|M (q)

12 |, which we
expand in terms of the BSM contributions as follows,

Γ(q)
12

M
(q)
12
' Γ(q)

12 (SM)
M

(q)
12 (SM)

(
1− M

(q)
12 (LR)

M
(q)
12 (SM)

)
+ Γ(q)

12 (LR)
M

(q)
12 (SM)

, (D.32)

where Γ(q)
12 (LR) = Γ(q)

12 (ξ) + Γ(q)
12 (Ci RR), while M (q)

12 (LR) is given by Eq. (5.16). We combine
the mLRSM contribution with the SM prediction, which is given by [215],

Γ(q)
12

M
(q)
12

∣∣∣∣∣
SM

= −10−4

c(q) + a(q)λ
(q)
u

λ
(q)
t

+ b(q)
(
λ

(q)
u

λ
(q)
t

)2 , (D.33)

with

a(d) = 11.7± 1.3 , a(s) = 12.3± 1.4 ,
b(d) = 0.24± 0.06 , b(s) = 0.79± 0.12 ,
c(d) = −49.5± 8.5 , c(s) = −48.0± 8.3 . (D.34)

The experimental determinations are shown in table 1.

D.2.6 KL → π0e+e−

This decay is sensitive to the dipole operators Cdsγd and Csdγd. Due to the enhancement
factors of mt/ms,d and mc/ms,d that appear in the matching of these Wilson coefficients,
the LR model can give rise to large contributions to the branching fraction. Within
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the SM, this decay is mediated by the semi-leptonic penguin operators C7V s̄γ
µd ēγµe

and C7As̄γ
µd ēγµγ5e [129], that give rise to direct CP violation. In addition, there are

long-distance and indirect CPV contributions that are harder to estimate.
The above contributions involve the following vector and tensor form factors,

〈π0|s̄γµd|KL〉 = 1√
2
fK

0π+
+ (q2)(pµK + pµπ) ,

〈π0|s̄σµνd|KL〉 = ifKπT (q2)
√

2
mK +mπ

(pµπpνK − p
µ
Kp

ν
π) , (D.35)

where fKπ+ (see table 5) is related to the vector form factor in K+ → π0e+ν, while fKπT has
been computed in ref. [216], fKπT = 0.417 ± 0.015, at a renormalization scale µ = 2GeV.
This allows us to express the branching fraction as

Br(KL → π0e+e−) = κe

(Imλt ỹ7V + 2
mK +mπ

fKπT (0)
fKπ+ (0)

16π2Im(v2CT )
)2

+ Imλ2
t ỹ

2
7A

 ,
(D.36)

where λt = V ∗L tsVL td and κe is introduced to cancel the SM dependence on the vector form
factor fKπ+ by normalizing to the K+ → π0e+ν decay rate. κe is defined as

κe = 1
|VLus + v2

2 C
us
Hud|2

τ(KL)
τ(K+)

(
αem
2π

)2
Br(K+ → π0e+ν) ,

'
(

0.225
|VLus + v2

2 C
us
Hud|

)2

6 · 10−6 , (D.37)

where we used the experimental values of ref. [119]. The BSM contributions in Eq. (D.36)
arise from CT

CT (µ) = −Qd4
(
msC

ds∗
γd (µ) +mdC

sd
γd(µ)

)
, (D.38)

while the Wilson coefficients of the SM penguin operators are given by [129]

ỹ7V (µ) = P0(µ)− 4
(
C0(xt) + 1

4D0(xt)
)

+ Y0(xt)
s2
w

, ỹ7A = −Y0(xt)
s2
w

, (D.39)

with

Y0(xt) = xt
8

(4− xt
1− xt

+ 3xt
(1− xt)2 log xt

)
,

C0(xt) = xt
8

(
xt − 6
xt − 1 + 3xt + 2

(1− xt)2 log xt
)
,

D0(xt) = −4
9 log xt + −19x3

t + 25x2
t

36(xt − 1)3 + x2
t (5x2

t − 2xt − 6)
18(1− xt)4 log xt , (D.40)

where xt = mt(mW )2/m2
W and, neglecting resummation, P0 = −4/9 log xc. The value of

P0(µ) at different scales can be found in ref. [129].
In principle, there are additional BSM contributions to Eq. (D.36) as the mLRSM

can also induce the semi-leptonic penguin operators. However, these contributions are not
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enhanced by factors of mt/ms,d. In addition, the contributions from heavy Higgs exchange
are suppressed by small Yukawa couplings while those from loops involving WR bosons
have the same form as the SM contributions with mW →MWR

and xt → m2
t /M

2
WR

so that
they are suppressed compared to the SM. It should be noted that Eq. (D.36) only contains
the direct CPV contributions from the SM and we neglected CP-even terms and indirect
contributions due to K-K̄ mixing [129]. We nevertheless use this expression to estimate the
branching ratio as the experimental limit is currently sensitive to branching ratios roughly
two orders of magnitude larger than the SM prediction [119],

BR(KL → π0e+e−) < 2.8 · 10−10 (90% C.L.) . (D.41)

E Renormalization group equations

In this appendix we give several semi-analytical results for the RGE effects of the four-
fermion operators discussed in section 3. As mentioned in section 3.6 the Wilson coefficients
of these operators in general depend on the scale at which we integrate out the heavy
LR fields. In our analysis we take this to be a single scale µ0 = MWR

. The resulting µ0
dependence of the right-handed charged currents is then approximately given by

v2
RC

ijkl
1,2RR(µlow) =

[
0.40η2/7 ± 0.79η−4/7

]
(VR)∗ji (VR)kl ,

where η = αs(µ0)
αs(mt) and we set µlow = 2GeV. Similar expressions can be derived for the

Ci quqd coefficients

Cijkl1, quqd(µlow) = η
1+
√

241
21

[
0.0045−0.093η−6/7+0.86η−2

√
241/21+2.1η−

18+2
√

241
21

]
Y kl
dHY

ij
uH

M2
H

+η
1+
√

241
21

[
−0.0045−0.093η−6/7−0.86η−2

√
241/21+2.1η−

18+2
√

241
21

]
Y il
dHY

kj
uH

M2
H

,

Cijkl2quqd(µlow) = η
1+
√

241
21

[
0.017+0.17η−6/7−0.056η−2

√
241/21−0.57η−

18+2
√

241
21

]
Y kl
dHY

ij
uH

M2
H

η
1+
√

241
21

[
−0.017+0.17η−6/7+0.056η−2

√
241/21−0.57η−

18+2
√

241
21

]
Y il
dHY

kj
uH

M2
H

,

where YqH are to be evaluated at µ = µ0. Finally, the Wilson coefficients for the ∆F = 2
operators can be written as

Cijkl4 (µlow) = g2
R

M2
WR

∑
a,b

a
(4)
ab

muamub

m2
t

V ∗LaiVL bj (VR)∗bk (VR)al , (E.1)

Cijkl5 (µlow) = −1.26η−8/7 1
M2
H

(YdH)∗jk Y il
dH + g2

R

M2
WR

∑
a,b

a
(5)
ab

muamub

m2
t

V ∗LaiVL bj (VR)∗bk (VR)al ,

with YqH again evaluated at µ = µ0, while the coefficients a(4,5) are now functions of µ0
and are given by,

a(4) = −0.024
[
a

(4)
1 + a

(4)
2 η−6/7 + a

(4)
3 ln η

]
η2/7 ,

a(5) = −0.024
[
a

(5)
1 η1/7 + a

(5)
2 η−2/7 + a

(5)
3 η + a

(5)
4 η ln η

]
η−5/7 , (E.2)
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where the coefficients for a(4) are

a
(4)
1 =

 1 1 0.53
1 0.97 0.55

0.53 0.55 0.50

 , a
(4)
2 = −

1.75 1.75 0.53
1.75 1.86 0.55
0.53 0.55 0.50

 , a
(4)
3 = −0.42

1 1 1
1 1 1
1 1 1

 ,

while those for a(5) are

a
(5)
1 =

 1 1 −1.58
1 1.22 −1.53

−1.58 −1.53 −1.64

 , a
(5)
2 = 3.03

1 1 1
1 1 1
1 1 1

 ,

a
(5)
3 =

 0.90 0.90 −1.25
0.90 0.97 −1.19
−1.25 −1.19 −1.34

 , a
(5)
4 = 0.14

1 1 1
1 1 1
1 1 1

 . (E.3)

The terms ∼ log η arise from the fact that the anomalous dimension matrix in Eq. (3.9)
has degenerate eigenvalues at nf = 6, leading to contributions of the form ∼ ηε−1

ε with
ε ∝ nf − 6.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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