7 research outputs found
PKS 1413+135: OH and H i at z = 0.247 with MeerKAT
The BL Lac object PKS 1413+135 was observed by the Large Survey Project MeerKAT Absorption Line Survey (MALS) in the L-band, at 1139 MHz and 12931379 MHz, targeting the HI and OH lines in absorption at z=0.24671. The radio continuum might come from the nucleus of the absorbing galaxy or from a background object at redshift lower than 0.5, as suggested by the absence of gravitational images. The HI absorption line is detected at a high signal-To-noise ratio, with a narrow central component, and with a red wing, confirming previous results. The OH 1720 MHz line is clearly detected in (maser) emission, peaking at a velocity shifted by-10 to-15 km s-1 with respect to the HI peak. The 1612 MHz line is lost due to radio frequency interference. The OH 1667 MHz main line is tentatively detected in absorption, but not the 1665 MHz line. Over 30 years a high variability is observed in optical depths, due to the rapid changes of the line of sight caused by the superluminal motions of the radio knots. The HI line has varied by 20% in depth, while the OH-1720 MHz depth has varied by a factor of ∼3. The position of the central velocity and the widths also varied. The absorbing galaxy is an early-Type spiral (maybe S0) seen edge-on, with a prominent dust lane, covering the whole disk. Given the measured mass concentration and the radio continuum size at centimeter wavelengths (100 mas corresponding to 400 pc at z=0.25), the width of the absorption lines from the nuclear regions are expected up to 250 km s-1. The narrowness of the observed lines (< 15 km s-1) suggests that the absorption comes from an outer gas ring, as frequently observed in S0 galaxies. The millimetric lines are even narrower (< 1 km s-1), which corresponds to the continuum size restricted to the core. The radio core is covered by individual 1 pc molecular clouds, whose column density is a few 1022 cm-2, which is compatible with the gas screen detected in X-rays
Discovery of Hydrogen Radio Recombination Lines at z = 0.89 toward PKS 1830-211
We report the detection of stimulated hydrogen radio recombination line (RRL) emission from ionized gas in a z = 0.89 galaxy using 580-1670 MHz observations from the MeerKAT Absorption Line Survey. The RRL emission originates in a galaxy that intercepts and strongly lenses the radio blazar PKS 1830−211 (z = 2.5). This is the second detection of RRLs outside of the local Universe and the first clearly associated with hydrogen. We detect effective H144α (and H163α) transitions at observed frequencies of 1156 (798) MHz by stacking 17 (27) RRLs with 21σ (14σ) significance. The RRL emission contains two main velocity components and is coincident in velocity with H i 21 cm and OH 18 cm absorption. We use the RRL spectral line energy distribution and a Bayesian analysis to constrain the density (n e ) and the volume-averaged path length (ℓ) of the ionized gas. We determine log ( n e ) = 2.0 − 0.7 + 1.0 cm−3 and log ( ℓ ) = − 0.7 − 1.1 + 1.1 pc toward the northeast (NE) lensed image, likely tracing the diffuse thermal phase of the ionized ISM in a thin disk. Toward the southwest (SW) lensed image, we determine log ( n e ) = 3.2 − 1.0 + 0.4 cm−3 and log ( ℓ ) = − 2.7 − 0.2 + 1.8 pc, tracing gas that is more reminiscent of H scii regions. We estimate a star formation (surface density) rate of ΣSFR ∼ 0.6 M ⊙ yr−1 kpc−2 or SFR ∼ 50 M ⊙ yr−1, consistent with a star-forming main-sequence galaxy of M ⋆ ∼ 1011 M ⊙. The discovery presented here opens up the possibility of studying ionized gas at high redshifts using RRL observations from current and future (e.g., SKA and ngVLA) radio facilities
Distribution and Evolution of CTG Repeats at the Myotonin Protein Kinase Gene in Human Populations
Artículo científico -- Instituto de Investigaciones en Salud. 1996We have analyzed the CTG repeat length and the neighboring Alu insertion/deletion (+/-) polymorphism in DNA samples from 16 ethnically and geographically diverse human populations to understand the evolutionary dynamics of the myotonic dystrophy-associated CTG repeat. Our results show that the CTG repeat length is variable in human populations. Although the (CTG)5 repeat is the most common allele in the majority of populations, this allele is absent among Costa Ricans and New Guinea highlanders. We have detected a (CTG)4 repeat allele, the smallest CTG known allele, in an American Samoan individual. (CTG) > or = 19 alleles are the most frequent in Europeans followed by the populations of Asian origin and are absent or rare in Africans. To understand the evolution of CTG repeats, we have used haplotype data from the CTG repeat and Alu(+/-) locus. Our results are consistent with previous studies, which show that among individuals of Caucasian and Japanese origin, the association of the Alu(+) allele with CTG repeats of 5 and > or = 19 is complete, whereas the Alu(-) allele is associated with (CTG)11-16 repeats. However, these associations are not exclusive in non-Caucasian populations. Most significantly, we have detected the (CTG)5 repeat allele on an Alu(-) background in several populations including Native Africans. As no (CTG)5 repeat allele on an Alu(-) background was observed thus far, it was proposed that the Alu(-) allele arose on a (CTG)11-13 background. Our data now suggest that the most parsimonious evolutionary model is (1) (CTG)5-Alu(+) is the ancestral haplotype; (2) (CTG)5-Alu(-) arose from a (CTG)5-Alu(+) chromosome later in evolution; and (3) expansion of CTG alleles occurred from (CTG)5 alleles on both Alu(+) and Alu(-) backgrounds.Universidad de Costa Rica, Instituto de Investigaciones en SaludUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias de la Salud::Instituto de Investigaciones en Salud (INISA