169 research outputs found

    Tensor interaction constraints from beta decay recoil spin asymmetry of trapped atoms

    Get PDF
    We have measured the angular distribution of recoiling daughter nuclei emitted from the Gamow-Teller β\beta decay of spin-polarized 80^{80}Rb. The asymmetry of this distribution vanishes to lowest order in the Standard Model (SM) in pure Gamow-Teller decays, producing an observable very sensitive to new interactions. We measure the non-SM contribution to the asymmetry to be ATA_{T}= 0.015 ±\pm 0.029 (stat) ±\pm 0.019 (syst), consistent with the SM prediction. We constrain higher-order SM corrections using the measured momentum dependence of the asymmetry, and their remaining uncertainty dominates the systematic error. Future progress in determining the weak magnetism term theoretically or experimentally would reduce the final errors. We describe the resulting constraints on fundamental 4-Fermi tensor interactions.Comment: 11 pages, 13 figures; v2 published in Phys. Rev. C, with referee clarifications and figures improved for black-and-whit

    Classification of P300 component using a riemannian ensemble approach

    Get PDF
    We present a framework for P300 ERP classification on the 2019 IFMBE competition dataset using a combination of a Riemannian geometry and ensemble learning. Covariance matrices and ERP prototypes are extracted after the EEG is passed through a filter bank and an ensemble of LDA classifiers is trained on subsets of channels, trials, and frequencies. The model selects a final class based on maximum probability of evidence from all ensembles. Our pipeline achieves an average classification accuracy of 81.2% on the test set

    Dipole source analysis of auditory P300 response in depressive and anxiety disorders

    Get PDF
    This paper is to study auditory event-related potential P300 in patients with anxiety and depressive disorders using dipole source analysis. Auditory P300 using 2-stimulus oddball paradigm was collected from 35 patients with anxiety disorder, 32 patients with depressive disorder, and 30 healthy controls. P300 dipole sources and peak amplitude of dipole activities were analyzed. The source analysis resulted in a 4-dipole configuration, where temporal dipoles displayed greater P300 amplitude than that of frontal dipoles. In addition, a right-greater-than-left hemispheric asymmetry of dipole magnitude was found in patients with anxiety disorder, whereas a left-greater-than-right hemispheric asymmetry of dipole magnitude was observed in depressed patients. Results indicated that the asymmetry was more prominent over the temporal dipole than that of frontal dipoles in patients. Patients with anxiety disorder may increase their efforts to enhance temporal dipole activity to compensate for a deficit in frontal cortex processing, while depressed patients show dominating reduction of right temporal activity. The opposite nature of results observed with hemispheric asymmetry in depressive and anxiety disorders could serve to be valuable information for psychiatric studies

    Stress-Induced Reinstatement of Drug Seeking: 20 Years of Progress

    Get PDF
    In human addicts, drug relapse and craving are often provoked by stress. Since 1995, this clinical scenario has been studied using a rat model of stress-induced reinstatement of drug seeking. Here, we first discuss the generality of stress-induced reinstatement to different drugs of abuse, different stressors, and different behavioral procedures. We also discuss neuropharmacological mechanisms, and brain areas and circuits controlling stress-induced reinstatement of drug seeking. We conclude by discussing results from translational human laboratory studies and clinical trials that were inspired by results from rat studies on stress-induced reinstatement. Our main conclusions are (1) The phenomenon of stress-induced reinstatement, first shown with an intermittent footshock stressor in rats trained to self-administer heroin, generalizes to other abused drugs, including cocaine, methamphetamine, nicotine, and alcohol, and is also observed in the conditioned place preference model in rats and mice. This phenomenon, however, is stressor specific and not all stressors induce reinstatement of drug seeking. (2) Neuropharmacological studies indicate the involvement of corticotropin-releasing factor (CRF), noradrenaline, dopamine, glutamate, kappa/dynorphin, and several other peptide and neurotransmitter systems in stress-induced reinstatement. Neuropharmacology and circuitry studies indicate the involvement of CRF and noradrenaline transmission in bed nucleus of stria terminalis and central amygdala, and dopamine, CRF, kappa/dynorphin, and glutamate transmission in other components of the mesocorticolimbic dopamine system (ventral tegmental area, medial prefrontal cortex, orbitofrontal cortex, and nucleus accumbens). (3) Translational human laboratory studies and a recent clinical trial study show the efficacy of alpha-2 adrenoceptor agonists in decreasing stress-induced drug craving and stress-induced initial heroin lapse

    Human Computer Interaction Meets Psychophysiology: A Critical Perspective

    Get PDF
    Human computer interaction (HCI) groups are more and more often exploring the utility of new, lower cost electroencephalography (EEG) interfaces for assessing user engagement and experience as well as for directly controlling computers. While the potential benefits of using EEG are considerable, we argue that research is easily driven by what we term naïve neurorealism. That is, data obtained with psychophysiological devices have poor reliability and uncertain validity, making inferences on mental states difficult. This means that unless sufficient care is taken to address the inherent shortcomings, the contributions of psychophysiological human computer interaction are limited to their novelty value rather than bringing scientific advance. Here, we outline the nature and severity of the reliability and validity problems and give practical suggestions for HCI researchers and reviewers on the way forward, and which obstacles to avoid. We hope that this critical perspective helps to promote good practice in the emerging field of psychophysiology in HCI

    Thermal Evolution of the Proton Irradiated Structure in Tungsten–5 wt% Tantalum

    Get PDF
    We have monitored the thermal evolution of the proton irradiated structure of W–5 wt% Ta alloy by in-situ annealing in a transmission electron microscope at fusion reactor temperatures of 500–1300 °C. The interstitial-type a/2 dislocation loops emit self-interstitial atoms and glide to the free sample surface during the early stages of annealing. The resultant vacancy excess in the matrix originates vacancy-type a/2 dislocation loops that grow by loop and vacancy absorption in the temperature range of 600–900 °C. Voids form at 1000 °C, by either vacancy absorption or loop collapse, and grow progressively up to 1300 °C. Tantalum delays void formation by a vacancy-solute trapping mechanism

    A shared role for RBF1 and dCAP-D3 in the regulation of transcription with consequences for innate immunity

    Get PDF
    Previously, we discovered a conserved interaction between RB proteins and the Condensin II protein CAP-D3 that is important for ensuring uniform chromatin condensation during mitotic prophase. The Drosophila melanogaster homologs RBF1 and dCAP-D3 co-localize on non-dividing polytene chromatin, suggesting the existence of a shared, non-mitotic role for these two proteins. Here, we show that the absence of RBF1 and dCAP-D3 alters the expression of many of the same genes in larvae and adult flies. Strikingly, most of the genes affected by the loss of RBF1 and dCAP-D3 are not classic cell cycle genes but are developmentally regulated genes with tissue-specific functions and these genes tend to be located in gene clusters. Our data reveal that RBF1 and dCAP-D3 are needed in fat body cells to activate transcription of clusters of antimicrobial peptide (AMP) genes. AMPs are important for innate immunity, and loss of either dCAP-D3 or RBF1 regulation results in a decrease in the ability to clear bacteria. Interestingly, in the adult fat body, RBF1 and dCAP-D3 bind to regions flanking an AMP gene cluster both prior to and following bacterial infection. These results describe a novel, non-mitotic role for the RBF1 and dCAP-D3 proteins in activation of the Drosophila immune system and suggest dCAP-D3 has an important role at specific subsets of RBF1-dependent genes

    Impact of Load-Related Neural Processes on Feature Binding in Visuospatial Working Memory

    Get PDF
    BACKGROUND: The capacity of visual working memory (WM) is substantially limited and only a fraction of what we see is maintained as a temporary trace. The process of binding visual features has been proposed as an adaptive means of minimising information demands on WM. However the neural mechanisms underlying this process, and its modulation by task and load effects, are not well understood. OBJECTIVE: To investigate the neural correlates of feature binding and its modulation by WM load during the sequential phases of encoding, maintenance and retrieval. METHODS AND FINDINGS: 18 young healthy participants performed a visuospatial WM task with independent factors of load and feature conjunction (object identity and position) in an event-related functional MRI study. During stimulus encoding, load-invariant conjunction-related activity was observed in left prefrontal cortex and left hippocampus. During maintenance, greater activity for task demands of feature conjunction versus single features, and for increased load was observed in left-sided regions of the superior occipital cortex, precuneus and superior frontal cortex. Where these effects were expressed in overlapping cortical regions, their combined effect was additive. During retrieval, however, an interaction of load and feature conjunction was observed. This modulation of feature conjunction activity under increased load was expressed through greater deactivation in medial structures identified as part of the default mode network. CONCLUSIONS AND SIGNIFICANCE: The relationship between memory load and feature binding qualitatively differed through each phase of the WM task. Of particular interest was the interaction of these factors observed within regions of the default mode network during retrieval which we interpret as suggesting that at low loads, binding processes may be 'automatic' but at higher loads it becomes a resource-intensive process leading to disengagement of activity in this network. These findings provide new insights into how feature binding operates within the capacity-limited WM system

    Brain Activity in Fairness Consideration during Asset Distribution: Does the Initial Ownership Play a Role?

    Get PDF
    Previous behavioral studies have shown that initial ownership influences individuals’ fairness consideration and other-regarding behavior. However, it is not entirely clear whether initial ownership influences the brain activity when a recipient evaluates the fairness of asset distribution. In this study, we randomly assigned the bargaining property (monetary reward) to either the allocator or the recipient in the ultimatum game and let participants of the study, acting as recipients, receive either disadvantageous unequal, equal, or advantageous unequal offers from allocators while the event-related potentials (ERPs) were recorded. Behavioral results showed that participants were more likely to reject disadvantageous unequal and equal offers when they initially owned the property as compared to when they did not. The two types of unequal offers evoked more negative going ERPs (the MFN) than the equal offers in an early time window and the differences were not modulated by the initial ownership. In a late time window, however, the P300 responses to division schemes were affected not only by the type of unequal offers but also by whom the property was initially assigned to. These findings suggest that while the MFN may function as a general mechanism that evaluates whether the offer is consistent or inconsistent with the equity rule, the P300 is sensitive to top-down controlled processes, into which factors related to the allocation of attentional resources, including initial ownership and personal interests, come to play
    corecore