112 research outputs found

    Isospin Response of the 4-He Continuum

    Get PDF
    This research was sponsored by the National Science Foundation Grant NSF PHY 87-1440

    A Global Potential Analysis of the 16^{16}O+28^{28}Si Reaction Using a New Type of Coupling Potential

    Full text link
    A new approach has been used to explain the experimental data for the 16^{16}O+28^{28}Si system over a wide energy range in the laboratory system from 29.0 to 142.5 MeV. A number of serious problems has continued to plague the study of this system for a couple of decades. The explanation of anomalous large angle scattering data; the reproduction of the oscillatory structure near the Coulomb barrier; the out-of-phase problem between theoretical predictions and experimental data; the consistent description of angular distributions together with excitation functions data are just some of these problems. These are long standing problems that have persisted over the years and do represent a challenge calling for a consistent framework to resolve these difficulties within a unified approach. Traditional frameworks have failed to describe these phenomena within a single model and have so far only offered different approaches where these difficulties are investigated separately from one another. The present work offers a plausible framework where all these difficulties are investigated and answered. Not only it improves the simultaneous fits to the data of these diverse observables, achieving this within a unified approach over a wide energy range, but it departs for its coupling potential from the standard formulation. This new feature is shown to improve consistently the agreement with the experimental data and has made major improvement on all the previous coupled-channels calculations for this system.Comment: 21 pages with 12 figure

    Isospin Response of the 4-He Continuum

    Get PDF
    This research was sponsored by the National Science Foundation Grant NSF PHY-931478

    Environmental stressors may cause equine herpesvirus reactivation in captive Grévy’s zebras (Equus grevyi)

    Get PDF
    Equine Herpesviruses (EHV) are common and often latent pathogens of equids which can cause fatalities when transmitted to non-equids. Stress and elevated glucocorticoids have been associated with EHV reactivation in domestic horses, but little is known about the correlation between stress and viral reactivation in wild equids. We investigated the effect of an environmental stressor (social group restructuring following a translocation event) on EHV reactivation in captive Grévy’s zebras (Equus grevyi). A mare was translocated by road transport from Zoo Mulhouse, France, to join a resident group of three mares in Tierpark Berlin, Germany. We used an indirect sampling method to assess the frequency of EHV shedding for 14 days immediately after the translocation event (termed the ‘experimental period’). The results were compared with those from two control periods, one preceding and one subsequent to the experimental period. In addition, we measured fecal glucocorticoid metabolite (fGCM) concentrations daily in all individuals from 6 days before, to 14 days after translocation. We found significantly higher EHV shedding frequencies during the experimental period, compared to each of the two control periods. All animals showed significantly elevated fGCM concentrations, compared to fGCM levels before translocation. Finally, we found that an increase in fGCM concentration was significantly associated with an increased likelihood of EHV shedding. Although the small number of animals in the study limits the conclusions that can be drawn from the study, taken together, our results support the hypothesis that environmental stressors induce viral reactivation in wild equids. Our results suggest that potentials stressors such as group restructuring and translocation should be considered in the management of zoological collections to reduce the risk of fatal EHV infections in novel hosts. Moreover, environmental stressors may play an important role in EHV reactivation and spread in wild equid populations

    Evaluating the impact of handling and logger attachment on foraging parameters and physiology in southern rockhopper penguins

    Get PDF
    Logger technology has revolutionised our knowledge of the behaviour and physiology of free-living animals but handling and logger attachments may have negative effects on the behaviour of the animals and their welfare. We studied southern rockhopper penguin ( Eudyptes chrysocome ) females during the guard stage in three consecutive breeding seasons (2008/09−2010/11) to evaluate the effects of handling and logger attachment on foraging trip duration, dive behaviour and physiological parameters. Smaller dive loggers (TDRs) were used in 2010/11 for comparison to larger GPS data loggers used in all three seasons and we included two categories of control birds: handled controls and PIT control birds that were previously marked with passive integrative transponders (PITs), but which had not been handled during this study. Increased foraging trip duration was only observed in GPS birds during 2010/11, the breeding season in which we also found GPS birds foraging further away from the colony and travelling longer distances. Compared to previous breeding seasons, 2010/11 may have been a period with less favourable environmental conditions, which would enhance the impact of logger attachments. A comparison between GPS and TDR birds showed a significant difference in dive depth frequencies with birds carrying larger GPS data loggers diving shallower. Mean and maximum dive depths were similar between GPS and TDR birds. We measured little impact of logger attachments on physiological parameters (corticosterone, protein, triglyceride levels and leucocyte counts). Overall, handling and short-term logger attachments (1-3 days) showed limited impact on the behaviour and physiology of the birds but care must be taken with the size of data loggers on diving seabirds. Increased drag may alter their diving behaviour substantially, thus constraining them in their ability to catch prey. Results obtained in this study indicate that data recorded may also not represent their normal dive behaviour

    Excretion patterns of coccidian oocysts and nematode eggs during the reproductive season in Northern Bald Ibis (Geronticus eremita)

    Get PDF
    Individual reproductive success largely depends on the ability to optimize behaviour, immune function and the physiological stress response. We have investigated correlations between behaviour, faecal steroid metabolites, immune parameters, parasite excretion patterns and reproductive output in a critically endangered avian species, the Northern Bald Ibis (Geronticus eremita). In particular, we related haematocrit, heterophil/lymphocyte ratio, excreted immune-reactive corticosterone metabolites and social behaviour with parasite excretion and two individual fitness parameters, namely, number of eggs laid and number of fledglings. We found that the frequency of excretion of parasites’ oocysts and eggs tended to increase with ambient temperature. Paired individuals excreted significantly more samples containing nematode eggs than unpaired ones. The excretion of nematode eggs was also significantly more frequent in females than in males. Individuals with a high proportion of droppings containing coccidian oocysts were more often preened by their partners than individuals with lower excretion rates. We observed that the more eggs an individual incubated and the fewer offspring fledged, the higher the rates of excreted samples containing coccidian oocysts. Our results confirm that social behaviour, physiology and parasite burden are linked in a complex and context-dependent manner. They also contribute background information supporting future conservation programmes dealing with this critically endangered species
    • …
    corecore