350 research outputs found

    Genetic characterization, current model systems and prognostic stratification in PAX fusion-negative vs. PAX fusion-positive rhabdomyosarcoma

    Get PDF
    Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children and adolescents and accounts for approximately 2% of soft tissue sarcomas in adults. It is subcategorized into distinct subtypes based on histological features and fusion status

    Loss of chromosome 3q is a prognostic marker in fusion-negative rhabdomyosarcoma

    Get PDF
    PURPOSE: Soft tissue sarcomas (STS) are rare mesenchymal neoplasms that frequently show complex chromosomal aberrations such as amplifications or deletions of DNA sequences or even whole chromosomes. We recently found that gain of chromosome (chr) 8 is associated with worse overall survival (OS) in STS as a group. We therefore aimed to investigate the overall copy number profile of rhabdomyosarcoma (RMS) to evaluate for prognostic signatures. METHODS: Fluorescence in situ hybridization (FISH) testing was performed on a cohort of STS to assess for chr8 gain. Copy number variation (CNV) data from the National Cancer Institute were analyzed to assess for prognostically significant CNV aberrations in RESULTS: Chr8 gain is a highly prevalent CNV in embryonal RMS and shows slightly improved prognosis. Meanwhile, loss of chr3q was associated with worse outcome in FN-RMS compared with FP-RMS. CONCLUSION: The pathogenesis of STS including FN-RMS remains poorly understood, emphasizing the need for new therapeutic advances and adequate risk stratification. Our data demonstrate that loss of chr3q is associated with poor OS in FN-RMS, supporting it as an important tool for risk stratification

    Unmasking intra-tumoral heterogeneity and clonal evolution in NF1-MPNST

    Get PDF
    Sarcomas are highly aggressive cancers that have a high propensity for metastasis, fail to respond to conventional therapies, and carry a poor 5-year survival rate. This is particularly true for patients with neurofibromatosis type 1 (NF1), in which 8%-13% of affected individuals will develop a malignant peripheral nerve sheath tumor (MPNST). Despite continued research, no effective therapies have emerged from recent clinical trials based on preclinical work. One explanation for these failures could be the lack of attention to intra-tumoral heterogeneity. Prior studies have relied on a single sample from these tumors, which may not be representative of all subclones present within the tumor. In the current study, samples were taken from three distinct areas within a single tumor from a patient with an NF1-MPNST. Whole exome sequencing, RNA sequencing, and copy number analysis were performed on each sample. A blood sample was obtained as a germline DNA control. Distinct mutational signatures were identified in different areas of the tumor as well as significant differences in gene expression among the spatially distinct areas, leading to an understanding of the clonal evolution within this patient. These data suggest that multi-regional sampling may be important for driver gene identification and biomarker development in the future

    Recycled nitrogen in lactating dairy cows fed high and low grain diets.

    Get PDF
    Recycled N used by rumen bacteria and reaching the small intestine was studied in 4 duodenally cannuled lactating cows fed diets of 2:1 (C) and 1:2 (F) concentrate to forage

    MEK inhibition synergizes with TYK2 inhibitors in NF1-associated malignant peripheral nerve sheath tumors

    Get PDF
    PURPOSE: Malignant peripheral nerve sheath tumors (MPNST) are aggressive sarcomas with limited treatment options and poor survival rates. About half of MPNST cases are associated with the neurofibromatosis type 1 (NF1) cancer predisposition syndrome. Overexpression of TYK2 occurs in the majority of MPNST, implicating TYK2 as a therapeutic target. EXPERIMENTAL DESIGN: The effects of pharmacologic TYK2 inhibition on MPNST cell proliferation and survival were examined using IncuCyte live cell assays in vitro, and downstream actions were analyzed using RNA-sequencing (RNA-seq), qPCR arrays, and validation of protein changes with the WES automated Western system. Inhibition of TYK2 alone and in combination with MEK inhibition was evaluated in vivo using both murine and human MPNST cell lines, as well as MPNST PDX. RESULTS: Pharmacologic inhibition of TYK2 dose-dependently decreased proliferation and induced apoptosis over time. RNA-seq pathway analysis on TYK2 inhibitor-treated MPNST demonstrated decreased expression of cell cycle, mitotic, and glycolysis pathways. TYK2 inhibition resulted in upregulation of the MEK/ERK pathway gene expression, by both RNA-seq and qPCR array, as well as increased pERK1/2 levels by the WES Western system. The compensatory response was tested with dual treatment with TYK2 and MEK inhibitors, which synergistically decreased proliferation and increased apoptosis in vitro. Finally, combination therapy was shown to inhibit growth of MPNST in multiple in vivo models. CONCLUSIONS: These data provide the preclinical rationale for the development of a phase I clinical trial of deucravacitinib and mirdametinib in NF1-assosciated MPNST

    Ex vivo to in vivo model of malignant peripheral nerve sheath tumors for precision oncology

    Get PDF
    BACKGROUND: Malignant peripheral nerve sheath tumors (MPNST) are aggressive soft tissue sarcomas that often develop in patients with neurofibromatosis type 1 (NF1). To address the critical need for novel therapeutics in MPNST, we aimed to establish an ex vivo 3D platform that accurately captured the genomic diversity of MPNST and could be utilized in a medium-throughput manner for drug screening studies to be validated in vivo using patient-derived xenografts (PDX). METHODS: Genomic analysis was performed on all PDX-tumor pairs. Selected PDX were harvested for assembly into 3D microtissues. Based on prior work in our labs, we evaluated drugs (trabectedin, olaparib, and mirdametinib) ex vivo and in vivo. For 3D microtissue studies, cell viability was the endpoint as assessed by Zeiss Axio Observer. For PDX drug studies, tumor volume was measured twice weekly. Bulk RNA sequencing was performed to identify pathways enriched in cells. RESULTS: We developed 13 NF1-associated MPNST-PDX and identified mutations or structural abnormalities in NF1 (100%), SUZ12 (85%), EED (15%), TP53 (15%), CDKN2A (85%), and chromosome 8 gain (77%). We successfully assembled PDX into 3D microtissues, categorized as robust (\u3e90% viability at 48 h), good (\u3e50%), or unusable (\u3c50%). We evaluated drug response to robust or good microtissues, namely MN-2, JH-2-002, JH-2-079-c, and WU-225. Drug response ex vivo predicted drug response in vivo, and enhanced drug effects were observed in select models. CONCLUSIONS: These data support the successful establishment of a novel 3D platform for drug discovery and MPNST biology exploration in a system representative of the human condition

    Discovery and targeting of a noncanonical mechanism of sarcoma resistance to ADI-PEG20 mediated by the microenvironment

    Get PDF
    PURPOSE: Many cancers lack argininosuccinate synthetase 1 (ASS1), the rate-limiting enzyme of arginine biosynthesis. This deficiency causes arginine auxotrophy, targetable by extracellular arginine-degrading enzymes such as ADI-PEG20. Long-term tumor resistance has thus far been attributed solely to ASS1 reexpression. This study examines the role of ASS1 silencing on tumor growth and initiation and identifies a noncanonical mechanism of resistance, aiming to improve clinical responses to ADI-PEG20. EXPERIMENTAL DESIGN: Tumor initiation and growth rates were measured for a spontaneous Ass1 knockout (KO) murine sarcoma model. Tumor cell lines were generated, and resistance to arginine deprivation therapy was studied in vitro and in vivo. RESULTS: Conditional Ass1 KO affected neither tumor initiation nor growth rates in a sarcoma model, contradicting the prevalent idea that ASS1 silencing confers a proliferative advantage. Ass1 KO cells grew robustly through arginine starvation in vivo, while ADI-PEG20 remained completely lethal in vitro, evidence that pointed toward a novel mechanism of resistance mediated by the microenvironment. Coculture with Ass1-competent fibroblasts rescued growth through macropinocytosis of vesicles and/or cell fragments, followed by recycling of protein-bound arginine through autophagy/lysosomal degradation. Inhibition of either macropinocytosis or autophagy/lysosomal degradation abrogated this growth support effect in vitro and in vivo. CONCLUSIONS: Noncanonical, ASS1-independent tumor resistance to ADI-PEG20 is driven by the microenvironment. This mechanism can be targeted by either the macropinocytosis inhibitor imipramine or the autophagy inhibitor chloroquine. These safe, widely available drugs should be added to current clinical trials to overcome microenvironmental arginine support of tumors and improve patient outcomes

    Malic enzyme 1 absence in synovial sarcoma shifts antioxidant system dependence and increases sensitivity to ferroptosis induction with ACXT-3102

    Get PDF
    PURPOSE: To investigate the metabolism of synovial sarcoma (SS) and elucidate the effect of malic enzyme 1 absence on SS redox homeostasis. EXPERIMENTAL DESIGN: ME1 expression was measured in SS clinical samples, SS cell lines, and tumors from an SS mouse model. The effect of ME1 absence on glucose metabolism was evaluated utilizing Seahorse assays, metabolomics, and C13 tracings. The impact of ME1 absence on SS redox homeostasis was evaluated by metabolomics, cell death assays with inhibitors of antioxidant systems, and measurements of intracellular reactive oxygen species (ROS). The susceptibility of ME1-null SS to ferroptosis induction was interrogated in vitro and in vivo. RESULTS: ME1 absence in SS was confirmed in clinical samples, SS cell lines, and an SS tumor model. Investigation of SS glucose metabolism revealed that ME1-null cells exhibit higher rates of glycolysis and higher flux of glucose into the pentose phosphate pathway (PPP), which is necessary to produce NADPH. Evaluation of cellular redox homeostasis demonstrated that ME1 absence shifts dependence from the glutathione system to the thioredoxin system. Concomitantly, ME1 absence drives the accumulation of ROS and labile iron. ROS and iron accumulation enhances the susceptibility of ME1-null cells to ferroptosis induction with inhibitors of xCT (erastin and ACXT-3102). In vivo xenograft models of ME1-null SS demonstrate significantly increased tumor response to ACXT-3102 compared with ME1-expressing controls. CONCLUSIONS: These findings demonstrate the translational potential of targeting redox homeostasis in ME1-null cancers and establish the preclinical rationale for a phase I trial of ACXT-3102 in SS patients. See related commentary by Subbiah and Gan, p. 3408

    Number and cost of claims linked to minor cervical trauma in Europe: results from the comparative study by CEA, AREDOC and CEREDOC

    Get PDF
    Comparative epidemiological study of minor cervical spine trauma (frequently referred to as whiplash injury) based on data from the Comité Européen des Assurances (CEA) gathered in ten European countries. To determine the incidence and expenditure (e.g., for assessment, treatment or claims) for minor cervical spine injury in the participating countries. Controversy still surrounds the basis on which symptoms following minor cervical spine trauma may develop. In particular, there is considerable disagreement with regard to a possible contribution of psychosocial factors in determining outcome. The role of compensation is also a source of constant debate. The method followed here is the comparison of the data from different areas of interest (e.g., incidence of minor cervical spine trauma, percentage of minor cervical spine trauma in relationship to the incidence of bodily trauma, costs for assessment or claims) from ten European countries. Considerable differences exist regarding the incidence of minor cervical spine trauma and related costs in participating countries. France and Finland have the lowest and Great Britain the highest incidence of minor cervical spine trauma. The number of claims following minor cervical spine trauma in Switzerland is around the European average; however, Switzerland has the highest expenditure per claim at an average cost of €35,000.00 compared to the European average of €9,000.00. Furthermore, the mandatory accident insurance statistics in Switzerland show very large differences between German-speaking and French- or Italian-speaking parts of the country. In the latter the costs for minor cervical spine trauma expanded more than doubled in the period from 1990 to 2002, whereas in the German-speaking part they rose by a factor of five. All the countries participating in the study have a high standard of medical care. The differences in claims frequency and costs must therefore reflect a social phenomenon based on the different cultural attitudes and medical approach to the problem including diagnosis. In Switzerland, therefore, new ways must be found to try to resolve the problem. The claims treatment model known as “Case Management” represents a new approach in which accelerated social and professional reintegration of the injured party is attempted. The CEA study emphasizes the fundamental role of medicine in that it postulates a clear division between the role of the attending physician and the medical expert. It also draws attention to the need to train medical professionals in the insurance business to the extent that they can interact adequately with insurance professionals. The results of this study indicate that the usefulness of the criterion of so-called typical clinical symptoms, which is at present applied by the courts to determine natural causality and has long been under debate, is inappropriate and should be replaced by objective assessment (e.g. accident and biomechanical analysis). In addition, the legal concept of adequate causality should be interpreted in the same way in both third party liability and social security law, which is currently not the case

    Observations of the pulsating subdwarf B star Feige 48: Constraints on evolution and companions

    Get PDF
    Since pulsating subdwarf B (sdBV or EC14026) stars were first discovered (Kilkenny et al, 1997), observational efforts have tried to realize their potential for constraining the interior physics of extreme horizontal branch (EHB) stars. Difficulties encountered along the way include uncertain mode identifications and a lack of stable pulsation mode properties. Here we report on Feige 48, an sdBV star for which follow-up observations have been obtained spanning more than four years, which shows some stable pulsation modes. We resolve the temporal spectrum into five stable pulsation periods in the range 340 to 380 seconds with amplitudes less than 1%, and two additional periods that appear in one dataset each. The three largest amplitude periodicities are nearly equally spaced, and we explore the consequences of identifying them as a rotationally split l=1 triplet by consulting with a representative stellar model. The general stability of the pulsation amplitudes and phases allows us to use the pulsation phases to constrain the timescale of evolution for this sdBV star. Additionally, we are able to place interesting limits on any stellar or planetary companion to Feige 48.Comment: accepted for publication in MNRA
    corecore