397 research outputs found

    Arzanol, a prenylated heterodimeric phloroglucinyl pyrone, inhibits eicosanoid biosynthesis and exhibits anti-inflammatory efficacy in vivo.

    Get PDF
    Based on its capacity to inhibit in vitro HIV-1 replication in T cells and the release of pro-inflammatory cytokines in monocytes, the prenylated heterodimeric phloroglucinyl α-pyrone arzanol was identified as the major anti-inflammatory and anti-viral constituent from Helichrysum italicum. We have now investigated the activity of arzanol on the biosynthesis of pro-inflammatory eicosanoids, evaluating its anti-inflammatory efficacy in vitro and in vivo. Arzanol inhibited 5-lipoxygenase (EC 7.13.11.34) activity and related leukotriene formation in neutrophils, as well as the activity of cyclooxygenase (COX)-1 (EC 1.14.99.1) and the formation of COX-2-derived prostaglandin (PG)E(2)in vitro (IC(50)=2.3-9ΌM). Detailed studies revealed that arzanol primarily inhibits microsomal PGE(2) synthase (mPGES)-1 (EC 5.3.99.3, IC(50)=0.4ΌM) rather than COX-2. In fact, arzanol could block COX-2/mPGES-1-mediated PGE(2) biosynthesis in lipopolysaccharide-stimulated human monocytes and human whole blood, but not the concomitant COX-2-derived biosynthesis of thromboxane B(2) or of 6-keto PGF(1α), and the expression of COX-2 or mPGES-1 protein was not affected. Arzanol potently suppressed the inflammatory response of the carrageenan-induced pleurisy in rats (3.6mg/kg, i.p.), with significantly reduced levels of PGE(2) in the pleural exudates. Taken together, our data show that arzanol potently inhibits the biosynthesis of pro-inflammatory lipid mediators like PGE(2)in vitro and in vivo, providing a mechanistic rationale for the anti-inflammatory activity of H. italicum, and a rationale for further pre-clinical evaluation of this novel anti-inflammatory lead

    The novel SinupretÂź dry extract exhibits anti-inflammatory effectiveness in vivo

    Get PDF
    SinupretÂź is frequently used as a herbal medicinal product to treat sinusitis, and it was assumed that anti-inflammatory effects might contribute to its overall beneficial properties. Here, we investigated the effects of a SinupretÂź drug mixture (SIN) as well as of the novel SinupretÂź dry extract (SIN DE) with the latter containing higher concentrations of active ingredients, in an in vivo model of acute inflammation, the carrageenan-induced pleurisy in rats. Both SIN and SIN DE were administered to rats orally at doses of 100mg/kg (low dose) and 500mg/kg (high dose) 1h prior to intrapleural injection of carrageenan. Although both SIN and SIN DE significantly reduced the exudate volume and leukocyte numbers in the pleural exudate at the high and the low dose 4h after carrageenan injection, the novel SIN DE was more efficient than SIN at the low dose, implying higher efficiency. In parallel, the novel dry extract SIN DE, but not SIN, at 500mg/kg significantly lowered the levels of prostaglandin (PG)E(2) in the exudates and reduced the amounts of cyclooxygenase (COX)-2 protein in the lungs. Together, SIN and SIN DE exert significant oral anti-inflammatory effects, which rationalize their therapeutic use in the management of sinusitis and other viral/microbial nasal infections that are associated with inflammation. Moreover, our results suggest that based on the higher efficiency and the accompanied reduction of COX-2 expression and PGE(2) formation, the novel dry extract SIN DE might be superior over the former SIN drug mixture

    Discovery of benzo[g]indol-3-carboxylates as potent inhibitors of microsomal prostaglandin E(2) synthase-1.

    No full text
    Selective inhibition of pro-inflammatory prostaglandin (PG)E2 formation via microsomal PGE2 synthase-1 (mPGES-1) might be superior over inhibition of all cyclooxygenase (COX)-derived products by non-steroidal anti-inflammatory drugs (NSAIDs) and coxibs. We recently showed that benzo[g]indol-3-carboxylates potently suppress leukotriene biosynthesis by inhibiting 5-lipoxygenase. Here, we describe the discovery of benzo[g]indol-3-carboxylates as a novel class of potent mPGES-1 inhibitors (IC50 ≄ 0.1 ÎŒM). Ethyl 2-(3-chlorobenzyl)-5-hydroxy-1H-benzo[g]indole-3-carboxylate (compound 7a) inhibits human mPGES-1 in a cell-free assay (IC50 = 0.6 ÎŒM) as well as in intact A549 cells (IC50 = 2 ÎŒM), and suppressed PGE2 pleural levels in rat carrageenan-induced pleurisy. Inhibition of cellular COX-1/2 activity was significantly less pronounced. Compound 7a significantly reduced inflammatory reactions in the carrageenan-induced mouse paw edema and rat pleurisy. Together, based on the select and potent inhibition of mPGES-1 and 5-lipoxygenase, benzo[g]indol-3-carboxylates possess potential as novel anti-inflammatory drugs with a valuable pharmacological profile

    The molecular pharmacology and in vivo activity of 2-(4-chloro-6-(2,3-dimethylphenylamino)pyrimidin-2-ylthio)octanoic acid (YS121), a dual inhibitor of microsomal prostaglandin E2 synthase-1 and 5-lipoxygenase.

    Get PDF
    The microsomal prostaglandin E2 synthase (mPGES)-1 is one of the terminal isoenzymes of prostaglandin (PG) E2 biosynthesis. Pharmacological inhibitors of mPGES-1 are proposed as an alternative to nonsteroidal anti-inflammatory drugs. We recently presented the design and synthesis of a series of pirinixic acid derivatives that dually inhibit mPGES-1 and 5-lipoxygenase. Here, we investigated the mechanism of mPGES-1 inhibition, the selectivity profile, and the in vivo activity of α-(n-hexyl)- substituted pirinixic acid [YS121; 2-(4-chloro-6-(2,3-dimethylphenylamino) pyrimidin-2-ylthio)octanoic acid)] as a lead compound. In cell-free assays, YS121 inhibited human mPGES-1 in a reversible and noncompetitive manner (IC 50 = 3.4 ΌM), and surface plasmon resonance spectroscopy studies using purified in vitro-translated human mPGES-1 indicate direct, reversible, and specific binding to mPGES-1 (KD = 10-14 ΌM). In lipopolysaccharide-stimulated human whole blood, PGE2 formation was concentration dependently inhibited (IC50 =2 ΌM), whereas concomitant generation of the cyclooxygenase (COX)-2-derived thromboxane B2 and 6-keto PGF1α and the COX-1-derived 12(S)-hydroxy-5-cis-8,10- transheptadecatrienoic acid was not significantly reduced. In carrageenan-induced rat pleurisy, YS121 (1.5 mg/kg i.p.) blocked exudate formation and leukocyte infiltration accompanied by reduced pleural levels of PGE2 and leukotriene B4 but also of 6-keto PGF 1α. Taken together, these results indicate that YS121 is a promising inhibitor of mPGES-1 with anti-inflammatory efficiency in human whole blood as well as in vivo

    Loss of the Orphan Nuclear Receptor SHP Is More Pronounced in Fibrolamellar Carcinoma than in Typical Hepatocellular Carcinoma

    Get PDF
    Hepatocellular carcinoma (HCC) remains a major problem in oncology. The molecular mechanisms which underlie its pathogenesis are poorly understood. Recently the Small Heterodimer Partner (SHP), an orphan nuclear receptor, was suggested to be involved as a tumor suppressor in hepatocellular carcinoma development. To date, there are no such studies regarding fibrolamellar carcinoma, a less common variant of HCC, which usually affects young people and displays distinct morphological features. The aim of our project was to evaluate the SHP levels in typical and fibrolamellar hepatocellular carcinoma with respect to the levels of one of the cell cycle regulators, cyclin D1. We assessed the immunoreactivity levels of SHP and cyclin D1 in 48 typical hepatocellular carcinomas, 9 tumors representing the fibrolamellar variant, 29 non malignant liver tissues and 7 macroregenerative nodules. We detected significantly lower SHP immunoreactivity in hepatocellular carcinoma when compared to non malignant liver tissue. Moreover, we found that SHP immunoreactivity is reduced in fibrolamellar carcinoma when compared to typical hepatocellular carcinoma. We also found that SHP is more commonly lost in HCC which arises in the liver with steatosis. The comparison between the cyclin D1 and SHP expression revealed the negative correlation between these proteins in the high grade HCC. Our results indicate that the impact of loss of SHP protein may be even more pronounced in fibrolamellar carcinoma than in a typical form of HCC. Further investigation of mechanisms through which the loss of SHP function may influence HCC formation may provide important information in order to design more effective HCC therapy

    Cast aluminium single crystals cross the threshold from bulk to size-dependent stochastic plasticity

    Get PDF
    Metals are known to exhibit mechanical behaviour at the nanoscale different to bulk samples. This transition typically initiates at the micrometre scale, yet existing techniques to produce micrometre-sized samples often introduce artefacts that can influence deformation mechanisms. Here, we demonstrate the casting of micrometre-scale aluminium single-crystal wires by infiltration of a salt mould. Samples have millimetre lengths, smooth surfaces, a range of crystallographic orientations, and a diameter D as small as 6 Όm. The wires deform in bursts, at a stress that increases with decreasing D. Bursts greater than 200 nm account for roughly 50% of wire deformation and have exponentially distributed intensities. Dislocation dynamics simulations show that single-arm sources that produce large displacement bursts halted by stochastic cross-slip and lock formation explain microcast wire behaviour. This microcasting technique may be extended to several other metals or alloys and offers the possibility of exploring mechanical behaviour spanning the micrometre scale
    • 

    corecore