65 research outputs found

    Novel Androgen Receptor Coregulator GRHL2 Exerts Both Oncogenic and Antimetastatic Functions in Prostate Cancer.

    Get PDF
    Alteration to the expression and activity of androgen receptor (AR) coregulators in prostate cancer is an important mechanism driving disease progression and therapy resistance. Using a novel proteomic technique, we identified a new AR coregulator, the transcription factor Grainyhead-like 2 (GRHL2), and demonstrated its essential role in the oncogenic AR signaling axis. GRHL2 colocalized with AR in prostate tumors and was frequently amplified and upregulated in prostate cancer. Importantly, GRHL2 maintained AR expression in multiple prostate cancer model systems, was required for cell proliferation, enhanced AR's transcriptional activity, and colocated with AR at specific sites on chromatin to regulate genes relevant to disease progression. GRHL2 is itself an AR-regulated gene, creating a positive feedback loop between the two factors. The link between GRHL2 and AR also applied to constitutively active truncated AR variants (ARV), as GRHL2 interacted with and regulated ARVs and vice versa. These oncogenic functions of GRHL2 were counterbalanced by its ability to suppress epithelial-mesenchymal transition and cell invasion. Mechanistic evidence suggested that AR assisted GRHL2 in maintaining the epithelial phenotype. In summary, this study has identified a new AR coregulator with a multifaceted role in prostate cancer, functioning as an enhancer of the oncogenic AR signaling pathway but also as a suppressor of metastasis-related phenotypes. Cancer Res; 77(13); 3417-30. ©2017 AACR

    Opposing transcriptional programs of KLF5 and AR emerge during therapy for advanced prostate cancer.

    Get PDF
    Endocrine therapies for prostate cancer inhibit the androgen receptor (AR) transcription factor. In most cases, AR activity resumes during therapy and drives progression to castration-resistant prostate cancer (CRPC). However, therapy can also promote lineage plasticity and select for AR-independent phenotypes that are uniformly lethal. Here, we demonstrate the stem cell transcription factor Krüppel-like factor 5 (KLF5) is low or absent in prostate cancers prior to endocrine therapy, but induced in a subset of CRPC, including CRPC displaying lineage plasticity. KLF5 and AR physically interact on chromatin and drive opposing transcriptional programs, with KLF5 promoting cellular migration, anchorage-independent growth, and basal epithelial cell phenotypes. We identify ERBB2 as a point of transcriptional convergence displaying activation by KLF5 and repression by AR. ERBB2 inhibitors preferentially block KLF5-driven oncogenic phenotypes. These findings implicate KLF5 as an oncogene that can be upregulated in CRPC to oppose AR activities and promote lineage plasticity

    Inhibiting androgen receptor nuclear entry in castration-resistant prostate cancer

    Get PDF
    Clinical resistance to the second-generation antiandrogen enzalutamide in castration resistant prostate cancer (CRPC), despite persistent androgen receptor (AR) activity in tumors, highlights the unmet medical need for next generation antagonists. We have identified and characterized tetra-aryl cyclobutanes (CBs) as a new class of competitive AR antagonists that exhibit a unique mechanism of action. These CBs are structurally distinct from current antiandrogens (hydroxyflutamide, bicalutamide, and enzalutamide), and inhibit AR-mediated gene expression, cell proliferation, and tumor growth in several models of CRPC. Conformational profiling revealed that CBs stabilize an AR conformation resembling an unliganded receptor. Using a variety of techniques, it was determined that the AR:CB complex was not recruited to AR-regulated promoters and, like apo AR, remains sequestered in the cytoplasm bound to heat shock proteins. Thus, we have identified third generation AR antagonists whose unique mechanism of action suggests that they may have therapeutic potential in CRPC

    Choline Kinase Alpha as an Androgen Receptor Chaperone and Prostate Cancer Therapeutic Target.

    Get PDF
    BACKGROUND: The androgen receptor (AR) is a major drug target in prostate cancer (PCa). We profiled the AR-regulated kinome to identify clinically relevant and druggable effectors of AR signaling. METHODS: Using genome-wide approaches, we interrogated all AR regulated kinases. Among these, choline kinase alpha (CHKA) expression was evaluated in benign (n = 195), prostatic intraepithelial neoplasia (PIN) (n = 153) and prostate cancer (PCa) lesions (n = 359). We interrogated how CHKA regulates AR signaling using biochemical assays and investigated androgen regulation of CHKA expression in men with PCa, both untreated (n = 20) and treated with an androgen biosynthesis inhibitor degarelix (n = 27). We studied the effect of CHKA inhibition on the PCa transcriptome using RNA sequencing and tested the effect of CHKA inhibition on cell growth, clonogenic survival and invasion. Tumor xenografts (n = 6 per group) were generated in mice using genetically engineered prostate cancer cells with inducible CHKA knockdown. Data were analyzed with χ(2) tests, Cox regression analysis, and Kaplan-Meier methods. All statistical tests were two-sided. RESULTS: CHKA expression was shown to be androgen regulated in cell lines, xenografts, and human tissue (log fold change from 6.75 to 6.59, P = .002) and was positively associated with tumor stage. CHKA binds directly to the ligand-binding domain (LBD) of AR, enhancing its stability. As such, CHKA is the first kinase identified as an AR chaperone. Inhibition of CHKA repressed the AR transcriptional program including pathways enriched for regulation of protein folding, decreased AR protein levels, and inhibited the growth of PCa cell lines, human PCa explants, and tumor xenografts. CONCLUSIONS: CHKA can act as an AR chaperone, providing, to our knowledge, the first evidence for kinases as molecular chaperones, making CHKA both a marker of tumor progression and a potential therapeutic target for PCa.This work was supported by a Cancer Research UK program grant (to DEN) and also by the US Department of Defense (Prostate Cancer Research Program Transformative Impact Award, grant ID W81XWH-13-2-0093; WDT and SMD), PCFA/Cancer Australia/Movember (grant IDs 1012337 and 1043482; WDT and LAS), Cancer Australia (grant ID 1043497; WDT and JC) and The Ray and Shirl Norman Cancer Research Trust (WDT and LAS). The Dame Roma Mitchell Cancer Research Laboratories were supported by an establishment grant from the PCFA (ID 2011/0452). FO was supported by a PhD project grant from Prostate Cancer UK (S10-10). LAS is supported by a Young Investigator Award from the Prostate Cancer Foundation (the Foundation 14 award)

    mRNA Splicing Variants: Exploiting Modularity to Outwit Cancer Therapy

    No full text

    Test-Firing Ammunition for Spliceosome Inhibition in Cancer

    No full text

    Biomarker-Based Targeting of the Androgen-Androgen Receptor Axis in Advanced Prostate Cancer

    Get PDF
    Recent therapeutic advances for managing advanced prostate cancer include the successful targeting of the androgen-AR axis with several new drugs in castrate resistant prostate cancer including abiraterone acetate and enzalutamide (MDV3100). This translational progress from “bench to bed-side” has resulted in an enlarging repertoire of novel and traditional drug choices now available for use in advanced prostate cancer therapeutics, which has had a positive clinical impact in prolonging longevity and quality of life of advanced prostate cancer patients. In order to further the clinical utility of these drugs, development of predictive biomarkers guiding individual therapeutic choices remains an ongoing challenge. This paper will summarize the potential in developing predictive biomarkers based on the pathophysiology of the androgen-AR axis in tumor tissue from patients with advanced prostate cancer as well as inherited variation in the patient’s genome. Specific examples of rational clinical trial designs incorporating potential predictive biomarkers from these pathways will illustrate several aspects of pharmacogenetic and pharmacogenomic predictive biomarker development in advanced prostate cancer therapeutics

    Indel detection from DNA and RNA sequencing data with transIndel

    No full text
    Abstract Background Insertions and deletions (indels) are a major class of genomic variation associated with human disease. Indels are primarily detected from DNA sequencing (DNA-seq) data but their transcriptional consequences remain unexplored due to challenges in discriminating medium-sized and large indels from splicing events in RNA-seq data. Results Here, we developed transIndel, a splice-aware algorithm that parses the chimeric alignments predicted by a short read aligner and reconstructs the mid-sized insertions and large deletions based on the linear alignments of split reads from DNA-seq or RNA-seq data. TransIndel exhibits competitive or superior performance over eight state-of-the-art indel detection tools on benchmarks using both synthetic and real DNA-seq data. Additionally, we applied transIndel to DNA-seq and RNA-seq datasets from 333 primary prostate cancer patients from The Cancer Genome Atlas (TCGA) and 59 metastatic prostate cancer patients from AACR-PCF Stand-Up- To-Cancer (SU2C) studies. TransIndel enhanced the taxonomy of DNA- and RNA-level alterations in prostate cancer by identifying recurrent FOXA1 indels as well as exitron splicing in genes implicated in disease progression. Conclusions Our study demonstrates that transIndel is a robust tool for elucidation of medium- and large-sized indels from DNA-seq and RNA-seq data. Including RNA-seq in indel discovery efforts leads to significant improvements in sensitivity for identification of med-sized and large indels missed by DNA-seq, and reveals non-canonical RNA-splicing events in genes associated with disease pathology
    corecore