259 research outputs found

    The Nielsen Identities of the SM and the definition of mass

    Full text link
    In a generic gauge theory the gauge parameter dependence of individual Green functions is controlled by the Nielsen identities, which originate from an enlarged BRST symmetry. We give a practical introduction to the Nielsen identities of the Standard Model (SM) and to their renormalization and illustrate the power of this elegant formalism in the case of the problem of the definition of mass.We prove to all orders in perturbation theory the gauge-independence of the complex pole of the propagator for all physical fields of the SM, in the most general case with mixing and CP violation. At the amplitude level, the formalism provides an intuitive and general understanding of the gauge recombinations which makes it particularly useful at higher orders. We also include in an appendix the explicit expressions for the fermionic two-point functions in a generic R_\xi gauge.Comment: 28 pages, LaTeX2e, 4 Postscript Figures, final version to appear on PRD, extensive revision

    Muon anomalous magnetic dipole moment in supersymmetric theories

    Get PDF
    We study the muon anomalous magnetic dipole moment in supersymmetric theories. The impact of the recent Brookhaven E821 experimental measurement on both model-independent and model-dependent supersymmetric parameter spaces is discussed in detail. We find that values of tan\beta as low as 3 can be obtained while remaining within the E821 one-sigma bound. This requires a light smuon; however, we show that, somewhat surprisingly, no model-independent bound can be placed on the mass of the lightest chargino for any tan\beta greater than or equal to 3. We also show that the maximum contributions to the anomalous magnetic moment are insensitive to CP-violating phases. We provide analyses of the supersymmetric contribution to the muon anomalous magnetic moment in dilaton-dominated supergravity models and gauge-mediated supersymmetry-breaking models. Finally, we discuss how other phenomena, such as B(b→sγ)B(b\to s\gamma), relic abundance of the lightest superpartner, and the Higgs mass may be correlated with the anomalous magnetic moment, but do not significantly impact the viability of a supersymmetric explanation, or the mass limits obtainable on smuons and charginos.Comment: 28 page

    Light MSSM Higgs boson mass to three-loop accuracy

    Full text link
    The light CP even Higgs boson mass, Mh, is calculated to three-loop accuracy within the Minimal Supersymmetric Standard Model (MSSM). The result is expressed in terms of DRbar parameters and implemented in the computer program H3m. The calculation is based on the proper approximations and their combination in various regions of the parameter space. The three-loop effects to Mh are typically of the order of a few hundred MeV and opposite in sign to the two-loop corrections. The remaining theory uncertainty due to higher order perturbative corrections is estimated to be less than 1 GeV.Comment: 39 pages, 13 figures. v2: minor changes, typos fixe

    A Non Standard Model Higgs at the LHC as a Sign of Naturalness

    Get PDF
    Light states associated with the hierarchy problem affect the Higgs LHC production and decays. We illustrate this within the MSSM and two simple extensions applying the latest bounds from LHC Higgs searches. Large deviations in the Higgs properties are expected in a natural SUSY spectrum. The discovery of a non-Standard-Model Higgs may signal the presence of light stops accessible at the LHC. Conversely, the more the Higgs is Standard-Model-like, the more tuned the theory becomes. Taking the ratio of different Higgs decay channels at the LHC cancels the leading QCD uncertainties and potentially improves the accuracy in Higgs coupling measurements to the percent level. This may lead to the possibility of doing precision Higgs physics at the LHC. Finally, we entertain the possibility that the ATLAS excess around 125 GeV persists with a Higgs production cross-section that is enhanced compared to the SM. This increase can only be accommodated in extensions of the MSSM and it may suggest that stops lie below 400 GeV, likely within reach of next year's LHC run.Comment: 22 pages, 14 figures. v2: lambdaSUSY point changed, typos fixed, references added, conclusions unchange

    Direct Detection of Dark Matter in the MSSM with Non-Universal Higgs Masses

    Full text link
    We calculate dark matter scattering rates in the minimal supersymmetric extension of the Standard Model (MSSM), allowing the soft supersymmetry-breaking masses of the Higgs multiplets, m_{1,2}, to be non-universal (NUHM). Compared with the constrained MSSM (CMSSM) in which m_{1,2} are required to be equal to the soft supersymmetry-breaking masses m_0 of the squark and slepton masses, we find that the elastic scattering cross sections may be up to two orders of magnitude larger than values in the CMSSM for similar LSP masses. We find the following preferred ranges for the spin-independent cross section: 10^{-6} pb \ga \sigma_{SI} \ga 10^{-10} pb, and for the spin-dependent cross section: 10^{-3} pb \ga \sigma_{SD}, with the lower bound on \sigma_{SI} dependent on using the putative constraint from the muon anomalous magnetic moment. We stress the importance of incorporating accelerator and dark matter constraints in restricting the NUHM parameter space, and also of requiring that no undesirable vacuum appear below the GUT scale. In particular, values of the spin-independent cross section another order of magnitude larger would appear to be allowed, for small \tan \beta, if the GUT vacuum stability requirement were relaxed, and much lower cross-section values would be permitted if the muon anomalous magnetic moment constraint were dropped.Comment: 30 pages LaTeX, 40 eps figure

    Search for Heavy Neutral MSSM Higgs Bosons with CMS: Reach and Higgs-Mass Precision

    Full text link
    The search for MSSM Higgs bosons will be an important goal at the LHC. We analyze the search reach of the CMS experiment for the heavy neutral MSSM Higgs bosons with an integrated luminosity of 30 or 60 fb^-1. This is done by combining the latest results for the CMS experimental sensitivities based on full simulation studies with state-of-the-art theoretical predictions of MSSM Higgs-boson properties. The results are interpreted in MSSM benchmark scenarios in terms of the parameters tan_beta and the Higgs-boson mass scale, M_A. We study the dependence of the 5 sigma discovery contours in the M_A-tan_beta plane on variations of the other supersymmetric parameters. The largest effects arise from a change in the higgsino mass parameter mu, which enters both via higher-order radiative corrections and via the kinematics of Higgs decays into supersymmetric particles. While the variation of ÎĽ\mu can shift the prospective discovery reach (and correspondingly the ``LHC wedge'' region) by about Delta tan_beta = 10, we find that the discovery reach is rather stable with respect to the impact of other supersymmetric parameters. Within the discovery region we analyze the accuracy with which the masses of the heavy neutral Higgs bosons can be determined. We find that an accuracy of 1-4% should be achievable, which could make it possible in favourable regions of the MSSM parameter space to experimentally resolve the signals of the two heavy MSSM Higgs bosons at the LHC.Comment: 24 pages, 8 figure

    CP Violation in Supersymmetry with Effective Minimal Flavour Violation

    Full text link
    We analyze CP violation in supersymmetry with Effective Minimal Flavour Violation, as recently proposed in arXiv:1011.0730. Unlike the case of standard Minimal Flavour Violation, we show that all the phases allowed by the flavour symmetry can be sizable without violating existing Electric Dipole Moment constraints, thus solving the SUSY CP problem. The EDMs at one and two loops are precisely analyzed as well as their correlations with the expected CP asymmetries in B physics.Comment: 22 pages, 7 figures. v2: Discussion in section 2 extended, conclusions unchanged. Matches published versio

    Higgs boson mass limits in perturbative unification theories

    Get PDF
    Motivated in part by recent demonstrations that electroweak unification into a simple group may occur at a low scale, we detail the requirements on the Higgs mass if the unification is to be perturbative. We do this for the Standard Model effective theory, minimal supersymmetry, and next-to-minimal supersymmetry with an additional singlet field. Within the Standard Model framework, we find that perturbative unification with sin2(thetaW)=1/4 occurs at Lambda=3.8 TeV and requires mh<460 GeV, whereas perturbative unification with sin2(thetaW)=3/8 requires mh<200 GeV. In supersymmetry, the presentation of the Higgs mass predictions can be significantly simplified, yet remain meaningful, by using a single supersymmetry breaking parameter Delta_S. We present Higgs mass limits in terms of Delta_S for the minimal supersymmetric model and the next-to-minimal supersymmetric model. We show that in next-to-minimal supersymmetry, the Higgs mass upper limit can be as large as 500 GeV even for moderate supersymmetry masses if the perturbative unification scale is low (e.g., Lambda=10 TeV).Comment: 20 pages, latex, 6 figures, references adde

    On SUSY GUTs with a degenerate Higgs mass matrix

    Get PDF
    Certain supersymmetric grand unified models predict that the coefficients of the quadratic terms in the MSSM Higgs potential should be degenerate at the GUT scale. We discuss some examples for such models, and we analyse the implications of this peculiar condition of a GUT-scale degenerate Higgs mass matrix for low-scale MSSM phenomenology. To this end we explore the parameter space which is consistent with existing experimental constraints by means of a Markov Chain Monte Carlo analysis.Comment: 31 pages, 27 figures; v2: typos correcte
    • …
    corecore