18 research outputs found

    Different bottom trawl ïŹsheries have a differential impact on the status of the North Sea seaïŹ‚oor habitats

    Get PDF
    Fisheries using bottom trawls are the most widespread source of anthropogenic physical disturbance to seafloor habitats. To mitigate such disturbances, the development of fisheries-, conservation-, and ecosystem-based management strategies requires the assessment of the impact of bottom trawling on the state of benthic biota. We explore a quantitative and mechanistic framework to assess trawling impact. Pressure and impact indicators that provide a continuous pressure–response curve are estimated at a spatial resolution of 1 χ 1 min latitude and longitude (~2 km2) using three methods: L1 estimates the proportion of the community with a life span exceeding the time interval between trawling events; L2 estimates the decrease in median longevity in response to trawling; and population dynamic (PD) estimates the decrease in biomass in response to trawling and the recovery time. Although impact scores are correlated, PD has the best performance over a broad range of trawling intensities. Using the framework in a trawling impact assessment of ten mĂ©tiers in the North Sea shows that muddy habitats are impacted the most and coarse habitats are impacted the least. Otter trawling for crustaceans has the highest impact, followed by otter trawling for demersal fish and beam trawling for flatfish and flyshooting. Beam trawling for brown shrimps, otter trawling for industrial fish, and dredging for molluscs have the lowest impact. Trawling is highly aggregated in core fishing grounds where the status of the seafloor is low but the catch per unit of effort (CPUE) per unit of impact is high, in contrast to peripheral grounds, where CPUE per unit of impact is low.</p

    Organism-sediment interactions govern post-hypoxia recovery of ecosystem functioning

    Get PDF
    Hypoxia represents one of the major causes of biodiversity and ecosystem functioning loss for coastal waters. Since eutrophication-induced hypoxic events are becoming increasingly frequent and intense, understanding the response of ecosystems to hypoxia is of primary importance to understand and predict the stability of ecosystem functioning. Such ecological stability may greatly depend on the recovery patterns of communities and the return time of the system properties associated to these patterns. Here, we have examined how the reassembly of a benthic community contributed to the recovery of ecosystem functioning following experimentally-induced hypoxia in a tidal flat. We demonstrate that organism-sediment interactions that depend on organism size and relate to mobility traits and sediment reworking capacities are generally more important than recovering species richness to set the return time of the measured sediment processes and properties. Specifically, increasing macrofauna bioturbation potential during community reassembly significantly contributed to the recovery of sediment processes and properties such as denitrification, bedload sediment transport, primary production and deep pore water ammonium concentration. Such bioturbation potential was due to the replacement of the small-sized organisms that recolonised at early stages by large-sized bioturbating organisms, which had a disproportionately stronger influence on sediment. This study suggests that the complete recovery of organism-sediment interactions is a necessary condition for ecosystem functioning recovery, and that such process requires long periods after disturbance due to the slow growth of juveniles into adult stages involved in these interactions. Consequently, repeated episodes of disturbance at intervals smaller than the time needed for the system to fully recover organism-sediment interactions may greatly impair the resilience of ecosystem functioning.

    Biological geography of the European seas: results from the MacroBen database

    Get PDF
    This study examines whether or not biogeographical and/or managerial divisions across the European seas can be validated using soft-bottom macrobenthic community data. The faunal groups used were: all macrobenthos groups, polychaetes, molluscs, crustaceans, echinoderms, sipunculans and the last 5 groups combined. In order to test the discriminating power of these groups, 3 criteria were used: (1) proximity, which refers to the expected closer faunal resemblance of adjacent areas relative to more distant ones; (2) randomness, which in the present context is a measure of the degree to which the inventories of the various sectors, provinces or regions may in each case be considered as a random sample of the inventory of the next largest province or region in a hierarchy of geographic scales; and (3) differentiation, which provides a measure of the uniqueness of the pattern. Results show that only polychaetes fulfill all 3 criteria and that the only marine biogeographic system supported by the analyses is the one proposed by Longhurst (1998). Energy fluxes and other interactions between the planktonic and benthic domains, acting over evolutionary time scales, can be associated with the multivariate pattern derived from the macrobenthos datasets. Third-stage multidimensional scaling ordination reveals that polychaetes produce a unique pattern when all systems are under consideration. Average island distance from the nearest coast, number of islands and the island surface area were the geographic variables best correlated with the community patterns produced by polychaetes. Biogeographic patterns suggest a vicariance model dominating over the founder-dispersal model except for the semi-closed regional seas, where a model substantially modified from the second option could be supported
    corecore