52 research outputs found

    Family Business Restructuring:A Review and Research Agenda

    Get PDF
    Although business restructuring occurs frequently and it is important for the prosperity of family firms across generations, research on family firms has largely evolved separately from research on business restructuring. This is a missed opportunity, since the two domains are complementary, and understanding the context, process, content, and outcome dimensions is relevant to both research streams. We address this by examining the intersection between research on business restructuring and family firms to improve our knowledge of each area and inform future research. To achieve this goal, we review and organize research across different dimensions to create an integrative framework. Building on current research, we focus on 88 studies at the intersection of family firm and business restructuring research to develop a model that identifies research needs and suggests directions for future research

    A New One-Dimensional Clarifier Model - Verification Using Full-Scale Experimental Data

    No full text
    A new one-dimensional clarifier model was developed, including components of existing models, and extended with a height-dependent cross-sectional area and two flowrate-dependent dispersion coefficients. This model is evaluated using data from a detailed one-month measuring campaign on a full-scale wastewater treatment plant. The data included hourly sludge concentration profiles, sludge bed heights at 10 minute intervals, sludge concentrations in inlet, effluent and recycle flows and regular settling properties characterised by batch settling tests. Due to the poor quality concentration measurements at the surface of the clarifier, the model was not calibrated to perform well in concentration predictions at this surface. However, excellent descriptive capabilities were obtained for sludge profiles and blanket level. The Cho et al. settling velocity function was found to be significantly better in terms of description capability than the more traditional Vesilind function

    Surface plasmon resonance study of the interaction of N-methyl mesoporphyrin IX with G-quadruplex DNA

    No full text
    International audienceSurface plasmon resonance (SPR) was used to investigate the interaction between N-methyl mesoporphyrin IX (NMM) and different G-quadruplex (G4) topologies. The study was associated with circular dichroism analysis (CD) to assess the topology of the G4s when they interacted with NMM. We demonstrate the high selectivity of NMM for the parallel G4 structure with a dissociation constant at least ten times lower than those of other G4 topologies. We also confirm the ability of NMM to shift the G4 conformation from both the hybrid and antiparallel topologies toward the parallel structure

    Label-free femtomolar detection of target DNA by impedimetric DNA sensor based on poly(pyrrole-nitrilotriacetic acid) film.

    No full text
    An ultrahigh performance impedimetric DNA sensor is presented showing detection limits in the femtomolar range. This electrochemical setup was constructed initially by electrogeneration of poly(11-pyrrol-1-yl-undecanoic acid N(alpha'),N(alpha)-bis(carboxymethyl)-L-lysine amide) (poly(pyrrole-NTA)) film. The latter was then modified by the coordination of Cu(2+) ions onto the chelating NTA centers followed by the immobilization of the ssHIV-DNA previously modified by a polyhistidine tag by affinity binding. The immobilization of the DNA probe and hybridization with the complementary target ssHIV-DNA were investigated using fluorescence microscopy and quantified with quartz crystal microbalance experiments leading to DNA probe and duplex coverage of 1.7 x 10(-11) and 7.7 x 10(-12) mol cm(-2), respectively. The duplex formation was corroborated by amperometric measurements through the duplex labeling by a glucose oxidase. In the presence of hydroquinone as redox indicator, the DNA sensor was applied to the impedimetric detection of target DNA without a labeling step. A linear quantification of the HIV DNA target was carried out in the range 10(-15) to 10(-8) mol L(-1)

    Cobalt sorption onto anaerobic granular sludge: Isotherm and spatial localization analysis

    No full text
    This study investigated the effect of different feeding regimes on the cobalt sorption capacity of anaerobic granular sludge from a full-scale bioreactor treating paper mill wastewater. Adsorption experiments were done with non-fed granules in monometal (only Co) and competitive conditions (Co and Ni in equimolar concentrations). In order to modify the extracellular polymeric substances and sulfides content of the granules, the sludge was fed for 30 days with glucose (pH 7, 30 °C, organic loading rate = 1.2 g glucose l¿1 day¿1) in the presence (COD/SO42¿ = 1) or absence of sulfate. The partitioning of the sorbed cobalt between the exchangeable, carbonates, organic matter/sulfides and residual fractions was determined using a sequential extraction procedure (modified Tessier). Experimental equilibrium sorption data for cobalt were analysed by the Langmuir, Freundlich and Redlich¿Peterson isotherm equations. The total Langmuir maximal sorption capacity of the sludge fed with glucose and sulfate loaded with cobalt alone displayed a significantly higher maximal cobalt sorption (Qmax = 18.76 mg g¿1 TSS) than the sludge fed with glucose alone (Qmax = 13.21 mg g¿1 TSS), essentially due to an increased sorption capacity of the exchangeable (30¿107%) and organic/sulfides fractions (70¿30%). Environmental scanning electron microscopy coupled with an energy dispersive X-ray analysis of granular cross-sections showed that mainly iron minerals (i.e. iron sulfides) were involved in the cobalt accumulation. Moreover, the sorbed cobalt was mainly located at the edge of the granules. The sorption characteristics of the exchangeable and carbonates fractions fitted well to the Redlich¿Peterson model (intermediate multi-layer sorption behaviour), whereas the sorption characteristics of the organic matter/sulfides and residual fractions fitted well to the Langmuir model (monolayer sorption behaviour). The organic matter/sulfides fraction displayed the highest affinity for cobalt for the three sludge types investigate

    Negative SPR Signals during Low Molecular Weight Analyte Recognition

    No full text
    International audienc

    Influence of the SPR experimental conditions on the G-quadruplex DNA recognition by porphyrin derivatives

    No full text
    International audienceSurface plasmon resonance (SPR) is a powerful technique to study the interactions of ligands with analytes and therefore a number of biosensor surfaces and injection methods have been developed so far. However, many experimental parameters can affect the interactions and consequently the affinity measurements. In particular, the interactions of positively charged analytes (often used for anionic nucleic acids targets) can be influenced by the sensing surfaces (e.g., negatively charged), leading to significant nonspecific interactions as well as regeneration problems. The aim of the present work is to investigate the effect of different parameters, including ionic strength, SPR biosensor (i.e., nature of the surfaces), and the injection method on the recognition of porphyrin G-quadruplex ligands. We demonstrate that the injection method does not influence the affinity whereas the ionic strength and the nature of the surface impact the recognition properties of the porphyrin for the G-quadruplex DNA. We also found that self-assembled monolayer coating surface presents many advantages in comparison with carboxymethylated dextran surface for SPR studies of G-quadruplex DNA/ligand interactions: (i) the electrostatic interaction with charged analytes is less important, (ii) its structure/composition is less sensitive to the ionic concentration and less prone to unspecific adsorption, (iii) it is easily homemade, and (iv) the cost is approximately 10 times cheaper
    • 

    corecore