171 research outputs found
Model validation for a noninvasive arterial stenosis detection problem
Copyright @ 2013 American Institute of Mathematical SciencesA current thrust in medical research is the development of a non-invasive method for detection, localization, and characterization of an arterial stenosis (a blockage or partial blockage in an artery). A method has been proposed to detect shear waves in the chest cavity which have been generated by disturbances in the blood flow resulting from a stenosis. In order to develop this methodology further, we use both one-dimensional pressure and shear wave experimental data from novel acoustic phantoms to validate corresponding viscoelastic mathematical models, which were developed in a concept paper [8] and refined herein. We estimate model parameters which give a good fit (in a sense to be precisely defined) to the experimental data, and use asymptotic error theory to provide confidence intervals for parameter estimates. Finally, since a robust error model is necessary for accurate parameter estimates and confidence analysis, we include a comparison of absolute and relative models for measurement error.The National Institute of Allergy and Infectious Diseases, the Air Force Office of Scientific Research, the Deopartment of Education and the Engineering and Physical Sciences Research Council (EPSRC)
Modelling human musculoskeletal functional movements using ultrasound imaging
<p>Abstract</p> <p>Background</p> <p>A widespread and fundamental assumption in the health sciences is that muscle functions are related to a wide variety of conditions, for example pain, ischemic and neurological disorder, exercise and injury. It is therefore highly desirable to study musculoskeletal contributions in clinical applications such as the treatment of muscle injuries, post-surgery evaluations, monitoring of progressive degeneration in neuromuscular disorders, and so on.</p> <p>The spatial image resolution in ultrasound systems has improved tremendously in the last few years and nowadays provides detailed information about tissue characteristics. It is now possible to study skeletal muscles in real-time during activity.</p> <p>Methods</p> <p>The ultrasound images are transformed to be congruent and are effectively compressed and stacked in order to be analysed with multivariate techniques. The method is applied to a relevant clinical orthopaedic research field, namely to describe the dynamics in the Achilles tendon and the calf during real-time movements.</p> <p>Results</p> <p>This study introduces a novel method to medical applications that can be used to examine ultrasound image sequences and to detect, visualise and quantify skeletal muscle dynamics and functions.</p> <p>Conclusions</p> <p>This new objective method is a powerful tool to use when visualising tissue activity and dynamics of musculoskeletal ultrasound registrations.</p
Leptomeningeal collaterals regulate reperfusion in ischemic stroke
Recanalization is the mainstay of ischemic stroke treatment. However, even with timely clot removal, many stroke patients recover poorly. Leptomeningeal collaterals (LMCs) are pial anastomotic vessels with yet unknown functions. Utilizing a thrombin-based mouse model of stroke and the gold standard fibrinolytic treatment rt-PA, we here show that LMCs play a critical role in preserving vascular function in ischemic territories. We applied laser speckle contrast imaging, ultrafast ultrasound, and two-photon microscopy, to show that after thrombolysis, LMCs allow for gradual reperfusion resulting in small infarcts. On the contrary, in mice with poor LMCs, distal segments of recanalized arteries collapse and deleterious hyperemia causes hemorrhage and mortality. Accordingly, in stroke patients with poor collaterals undergoing thrombectomy, rapid reperfusion resulted in hemorrhagic transformation and unfavorable recovery. Thus, we identify LMCs as key components regulating reperfusion after stroke. Future therapeutic interventions should aim to enhance collateral function, allowing for gradual reperfusion of ischemic tissues after stroke
Study on administration of 1,5-anhydro-D-fructose in C57BL/6J mice challenged with high-fat diet
1,5-Anhydro-D-fructose (AF) is a mono-saccharide directly formed from starch and glycogen by the action of α-1,4-glucan lyase (EC 4.2.2.13). Our previous study has indicated that AF increases glucose tolerance and insulin secretion in NMRI mice after administration through a gastric gavage in a single dose at 150 mg per mouse. In this study, we used high-fat feeding of C57BL/6J mice to examine the influence of long-term administration of AF on glucose-stimulated insulin secretion in vivo and in vitro. We found that 8-weeks of high-fat feeding increased body weight, fasting blood glucose and insulin levels in C57BL/6J mice when compared to mice fed normal diet. Impaired glucose tolerance was also observed in mice receiving 8-weeks of high-fat diet. In contrast, AF (1.5 g/kg/day), administered through drinking water for 8-weeks, did not affect body weight or food and water intake in mice fed either the high-fat or normal diet. There was no difference in basal blood glucose or insulin levels between AF-treated and control group. Oral glucose tolerance test (OGTT) showed that AF did not affect glucose-stimulated insulin secretion in mice. In in vitro studies with isolated islets, AF did not influence glucose-stimulated insulin secretion in mice receiving either high-fat or normal diet. We therefore conclude that when given through drinking water for 8 weeks at 1.5 g/kg/day, AF has no effect on glucose-stimulated insulin secretion in C57BL/6J mice challenged with a high-fat diet
Noninvasive, Transient and Selective Blood-Brain Barrier Opening in Non-Human Primates In Vivo
The blood-brain barrier (BBB) is a specialized vascular system that impedes entry of all large and the vast majority of small molecules including the most potent central nervous system (CNS) disease therapeutic agents from entering from the lumen into the brain parenchyma. Microbubble-enhanced, focused ultrasound (ME-FUS) has been previously shown to disrupt noninvasively, selectively, and transiently the BBB in small animals in vivo. For the first time, the feasibility of transcranial ME-FUS BBB opening in non-human primates is demonstrated with subsequent BBB recovery. Sonications were combined with two different types of microbubbles (customized 4–5 µm and Definity®). 3T MRI was used to confirm the BBB disruption and to assess brain damage
VISCOELASTIC AND ANISOTROPIC MECHANICAL PROPERTIES OF IN VIVO MUSCLE TISSUE ASSESSED BY SUPERSONIC SHEAR IMAGING
The in vivo assessment of the biomechanical properties of the skeletal muscle is a complex issue because the muscle is an anisotropic, viscoelastic and dynamic medium. In this article, these mechanical properties are characterized for the brachialis muscle in vivo using a noninvasive ultrasound-based technique. This supersonic shear imaging technique combines an ultra-fast ultrasonic system and the remote generation of transient mechanical forces into tissue via the radiation force of focused ultrasonic beams. Such an ultrasonic radiation force is induced deep within the muscle by a conventional ultrasonic probe and the resulting shear waves are then imaged with the same probe (5 MHz) at an ultra-fast framerate (up to 5000 frames/s). Local tissue velocity maps are obtained with a conventional speckle tracking technique and provide a full movie of the shear wave propagation through the entire muscle. Shear wave group velocities are then estimated using a time of flight algorithm. This approach provides a complete set of quantitative and in vivo parameters describing the muscle's mechanical properties as a function of active voluntary contraction as well as passive extension of healthy volunteers. Anisotropic properties are also estimated by tilting the probe head with respects to the main muscular fibers direction. Finally, the dispersion of the shear waves is studied for these different configurations and shear modulus and shear viscosity are quantitatively assessed assuming the viscoelastic Voigt's model. (E-mail: [email protected]) (c) 2010 World Federation for Ultrasound in Medicine & Biology
- …