40 research outputs found

    Data Acquisition and Control System for Broad-band Microwave Reflectometry on EAST

    Full text link
    Microwave reflectometry is a non-intrusive plasma diagnostic tool which is widely applied in many fusion devices. In 2014, the microwave reflectometry on Experimental Advanced Superconducting Tokamak (EAST) had been upgraded to measure plasma density profile and fluctuation, which covered the frequency range of Q-band (32-56 GHz), V-band (47-76 GHz) and W-band (71-110 GHz). This paper presented a dedicated data acquisition and control system (DAQC) to meet the measurement requirements of high accuracy and temporal resolution. The DAQC consisted of two control modules, which integrated arbitrary waveform generation block (AWG) and trigger processing block (TP), and two data acquisition modules (DAQ) that was implemented base on the PXIe platform from National Instruments (NI). All the performance parameters had satisfied the requirements of reflectometry. The actual performance will be further examined in the experiments of EAST in 2014.Comment: 2 pages, 2 figures, 19th IEEE-NPSS Real-Time conferenc

    The Sorption of Sulfamethoxazole by Aliphatic and Aromatic Carbons from Lignocellulose Pyrolysis

    Get PDF
    Massive biomass waste with lignocellulose components can be used to produce biochar for environmental remediation. However, the impact of lignocellulose pyrolysis on biochar structure in relation to the sorption mechanism of ionizable antibiotics is still poorly understood. In this paper, diverse techniques including thermogravimetric analysis and 13C nuclear magnetic resonance were applied to investigate the properties of biochars as affected by the pyrolysis of cellulose and lignin in feedstock. Cellulose-derived biochars possessed more abundant groups than lignin-derived biochars, suggesting the greater preservation of group for cellulose during the carbonization. Higher sorption of sulfamethoxazole (SMX) was also observed by cellulose-derived biochars owing to hydrogen bond interaction. Sorption affinity gradually declined with the conversion aliphatic to aromatic carbon, whereas the enhanced specific surface area (SSA) subsequently promoted SMX sorption as evidenced by increased SSA-N2 and SSA-CO2 from 350 to 450 °C. The decreased Kd/SSA-N2 values with increasing pH values implied a distinct reduction in sorption per unit area, which could be attributed to enhanced electrostatic repulsion. This work elucidated the role of carbon phases from thermal conversion of lignocellulose on the sorption performance for sulfonamide antibiotics, which will be helpful to the structural design of carbonaceous adsorbents for the removal of ionizable antibiotics

    Mechanical behaviour of PVC-CFRP confined concrete column with RC beam joint subjected to axial load

    Get PDF
    U radu je prikazano eksperimentalno istraživanje oblika loma, granične čvrstoće, deformacija i krivulja opterećenje-pomak spoja betonskog stupa obavijenog PVC-CFRP-om i AB grede (PCRBJ) za slučaj osnog opterećenja. Uzorci spoja betonskog stupa obavijenog PVC-om i AB grede (PRBJ) i devet uzoraka PCRBJ projektirani su prema načelu slabog stupa i čvrstog spoja. Predložen je pristup numeričke analize za prikladno predviđanje krivulje opterećenje – pomak. Utvrđeno je da se numerički predviđene vrijednosti dobro podudaraju s rezultatima ispitivanja.An experimental investigation on failure mode, ultimate strength, strain variation, and load-displacement curves of PVC-CFRP confined concrete column with reinforced concrete (RC) beam joint (PCRBJ) subjected to axial load was conducted in this study. Samples of a PVC confined concrete column with RC beam joint (PRBJ) and nine PCRBJs were designed using the principle of weak column and strong joint. A numerical analysis approach for convenient prediction of the load-displacement curve of specimen was proposed. It was established that the estimated values are in good agreement with test data

    The 7th Asia-Paci c Transport Working Group (APTWG) Meeting

    Get PDF
    This conference report summarizes the contributions to, and discussions at, the 7th Asia-Pacific Transport Working Group Meeting held at Nagoya University, Japan, during 5–8 June 2017. The topics of the meeting were organized under four main headings: (1) turbulence and blob at the boundary of magnetic topology, (2) model reduction and experiments for validation, (3) mode competition in turbulence and MHD driven by energetic particle, (4) mechanism determining plasma flows and their impact on transport and MHD. The Young Researchers Forum which was held in this meeting is also described in this report

    Identification of RE1-Silencing Transcription Factor as a Promoter of Metastasis in Pancreatic Cancer

    Get PDF
    Pancreatic cancer is characterized by its rapid progression and early metastasis. This requires further elucidation of the key promoters for its progression and metastasis. In this study, we identified REST as the hub gene of a gene module which is closely associated with cancer stage by weighted gene correlation network analysis. Validation with the TCGA database, western blot analysis of human pancreatic cancer cell lines (AsPC-1, Capan-2, SW-1990, and PANC-1) and immunohistochemical analysis of paraffin-embedded pancreatic cancer tissue sections showed that REST was enriched in tissue samples of advanced stage and metastatic phenotype cell lines. Survival analysis with the TCGA database and our own follow-up data suggested that patients with higher expression level of REST showed worse overall survival rate. In vitro functional experiments suggested that knockdown of REST suppressed proliferation, migration, invasion and epithelial-mesenchymal transition of AsPC-1 and PANC-1 cells. In vivo experiments (a subcutaneous BALB/c nude mouse model and a superior mesenteric vein injection BALB/c nude mouse model) suggested that knockdown of REST suppressed growth and metastasis of xenograft tumor. Finally, we investigated the underlying molecular mechanism of REST and identified REST as a potential downstream target of MAPK signaling pathway. In conclusion, our results of bioinformatic analysis, in vitro and in vivo functional analysis suggested that REST may serve as a promoter of metastasis in pancreatic cancer

    Apatinib combined with camrelizumab in the treatment of recurrent/metastatic nasopharyngeal carcinoma: a prospective multicenter phase II study

    Get PDF
    BackgroundPreclinical studies demonstrated that immune checkpoint inhibitors combined with antiangiogenic drugs have a synergistic anti-tumor effect. This present phase II trial aimed to evaluate the efficacy and safety of apatinib combined with camrelizumab in patients with recurrent/metastatic nasopharyngeal carcinoma (RM-NPC).MethodsPatients with RM-NPC were administered with apatinib at 250 mg orally once every day and with camrelizumab at 200 mg via intravenous infusion every 2 weeks until the disease progressed or toxicity became unacceptable. The objective response rate (ORR) was the primary endpoint, assessed using RECIST version 1.1. Progression-free survival (PFS), overall survival (OS), disease control rate (DCR) and safety were the key secondary endpoints. This study was registered with ClinicalTrials.gov, NCT04350190.ResultsThis study enrolled 26 patients with RM-NPC between January 14, 2021 and September 15, 2021. At data cutoff (March 31, 2023), the median duration of follow-up was 16 months (ranging from 1 to 26 months). The ORR was 38.5% (10/26), the disease control rate (DCR) was 61.5% (16/26), and the median PFS was 6 months (IQR 3.0-20.0). The median OS was 14 months (IQR 6.0-21.25). Treatment-related grade 3 or 4 adverse events occurred in seven (26.9%) patients, and comprised anemia (7.7%), stomatitis (3.8%), headache (3.8%), pneumonia (7.7%), and myocarditis (3.8%). There were no serious treatment-related adverse events or treatment-related deaths.ConclusionIn patients with RM-NPC, apatinib plus camrelizumab showed promising antitumor activity and manageable toxicities

    Synchronous post-acceleration of laser-driven protons in helical coil targets by controlling the current dispersion

    Get PDF
    Post-acceleration of protons in helical coil targets driven by intense, ultrashort laser pulses can enhance ion energy by utilizing the transient current from the targets’ self-discharge. The acceleration length of protons can exceed a few millimeters, and the acceleration gradient is of the order of GeV/m. How to ensure the synchronization between the accelerating electric field and the protons is a crucial problem for efficient post-acceleration. In this paper, we study how the electric field mismatch induced by current dispersion affects the synchronous acceleration of protons. We propose a scheme using a two-stage helical coil to control the current dispersion. With optimized parameters, the energy gain of protons is increased by four times. Proton energy is expected to reach 45 MeV using a hundreds-of-terawatts laser, or more than 100 MeV using a petawatt laser, by controlling the current dispersion

    Um programa de ginástica para coronariopatas Coletânea de Exercícios Sugeridos

    Get PDF
    The acceleration of super-heavy ions (SHIs) from plasmas driven by ultrashort (tens of femtoseconds) laser pulses is a challenging topic waiting for breakthrough. The detecting and controlling of the ionization process, and the adoption of the optimal acceleration scheme are crucial for the generation of highly energetic SHIs. Here, we report the experimental results on the generation of deeply ionized super-heavy ions (Au) with unprecedented energy of 1.2 GeV utilizing ultrashort laser pulses (22 fs) at the intensity of 10^22 W/cm2. A novel self-calibrated diagnostic method was developed to acquire the absolute energy spectra and charge state distributions of Au ions abundant at the charge state of 51+ and reaching up to 61+. The measured charge state distributions supported by 2D particle-in-cell simulations serves as an additional tool to inspect the ionization dynamics associated with SHI acceleration, revealing that the laser intensity is the crucial parameter for the acceleration of Au ions over the pulse duration. The use of double-layer targets results in a prolongation of the acceleration time without sacrificing the strength of acceleration field, which is highly favorable for the generation of high-energy super heavy ions

    Observation of ELM mitigation by counter current direction NBI on EAST

    No full text

    FM-STDNet: High-Speed Detector for Fast-Moving Small Targets Based on Deep First-Order Network Architecture

    No full text
    Identifying objects of interest from digital vision signals is a core task of intelligent systems. However, fast and accurate identification of small moving targets in real-time has become a bottleneck in the field of target detection. In this paper, the problem of real-time detection of the fast-moving printed circuit board (PCB) tiny targets is investigated. This task is very challenging because PCB defects are usually small compared to the whole PCB board, and due to the pursuit of production efficiency, the actual production PCB moving speed is usually very fast, which puts higher requirements on the real-time of intelligent systems. To this end, a new model of FM-STDNet (Fast Moving Small Target Detection Network) is proposed based on the well-known deep learning detector YOLO (You Only Look Once) series model. First, based on the SPPNet (Spatial Pyramid Pooling Networks) network, a new SPPFCSP (Spatial Pyramid Pooling Fast Cross Stage Partial Network) spatial pyramid pooling module is designed to adapt to the extraction of different scale size features of different size input images, which helps retain the high semantic information of smaller features; then, the anchor-free mode is introduced to directly classify the regression prediction information and do the structural reparameterization construction to design a new high-speed prediction head RepHead to further improve the operation speed of the detector. The experimental results show that the proposed detector achieves 99.87% detection accuracy at the fastest speed compared to state-of-the-art depth detectors such as YOLOv3, Faster R-CNN, and TDD-Net in the fast-moving PCB surface defect detection task. The new model of FM-STDNet provides an effective reference for the fast-moving small target detection task
    corecore