479 research outputs found

    Correlation between electric-field-induced phase transition and piezoelectricity in lead zirconate titanate films

    Get PDF
    We observed that electric field induces phase transition from tetragonal to rhombohedral in polycrystalline morphotropic lead zirconate titanate (PZT) films, as reported in 2011 for bulk PZT. Moreover, we evidenced that this field-induced phase transition is strongly correlated with PZT film piezoelectric properties, that is to say the larger the phase transition, the larger the longitudinal piezoelectric coefficient d 33,eff . Although d 33,eff is already comprised between as 150 to 170 pm/V, our observation suggests that one could obtain larger d 33,eff values, namely 250 pm/V, by optimizing the field-induced phase transition thanks to composition fine tuning

    Electrocaloric effects in multilayer capacitors for cooling applications

    Get PDF
    Abstract</jats:p

    Cantilever-based electret energy harvesters

    Full text link
    Integration of structures and functions allowed reducing electric consumptions of sensors, actuators and electronic devices. Therefore, it is now possible to imagine low-consumption devices able to harvest their energy in their surrounding environment. One way to proceed is to develop converters able to turn mechanical energy, such as vibrations, into electricity: this paper focuses on electrostatic converters using electrets. We develop an accurate analytical model of a simple but efficient cantilever-based electret energy harvester. Therefore, we prove that with vibrations of 0.1g (~1m/s^{2}), it is theoretically possible to harvest up to 30\muW per gram of mobile mass. This power corresponds to the maximum output power of a resonant energy harvester according to the model of William and Yates. Simulations results are validated by experimental measurements but the issues of parasitic capacitances get a large impact. Therefore, we 'only' managed to harvest 10\muW per gram of mobile mass, but according to our factor of merit, this puts us in the best results of the state of the art. http://iopscience.iop.org/0964-1726/20/10/105013Comment: This is an author-created, un-copyedited version of an article accepted for publication in Smart Materials and Structures. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The definitive publisher-authenticated version is available online at doi:10.1088/0964-1726/20/10/105013; http://iopscience.iop.org/0964-1726/20/10/10501

    Cryogenic silicon detectors with implanted contacts for the detection of visible photons using the Neganov-Luke Effect

    Full text link
    There is a common need in astroparticle experiments such as direct dark matter detection, 0{\nu}\b{eta}\b{eta} (double beta decay without emission of neutrinos) and Coherent Neutrino Nucleus Scattering experiments for light detectors with a very low energy threshold. By employing the Neganov-Luke Effect, the thermal signal of particle interactions in a semiconductor absorber operated at cryogenic temperatures, can be amplified by drifting the photogenerated electrons and holes in an electric field. This technology is not used in current experiments, in particular because of a reduction of the signal amplitude with time which is due to trapping of the charges within the absorber. We present here the first results of a novel type of Neganov-Luke Effect detector with an electric field configuration designed to improve the charge collection within the semiconductor.Comment: 6 pages, 5 figures, submitted to Journal of Low Temperature Physic

    Enhanced electrocaloric efficiency via energy recovery.

    Get PDF
    Materials that show large and reversible electrically driven thermal changes near phase transitions have been proposed for cooling applications, but energy efficiency has barely been explored. Here we reveal that most of the work done to drive representative electrocaloric cycles does not pump heat and may therefore be recovered. Initially, we recover 75-80% of the work done each time BaTiO3-based multilayer capacitors drive electrocaloric effects in each other via an inductor (diodes prevent electrical resonance while heat flows after each charge transfer). For a prototype refrigerator with 24 such capacitors, recovering 65% of the work done to drive electrocaloric effects increases the coefficient of performance by a factor of 2.9. The coefficient of performance is subsequently increased by reducing the pumped heat and recovering more work. Our strategy mitigates the advantage held by magnetocaloric prototypes that exploit automatic energy recovery, and should be mandatory in future electrocaloric cooling devices

    Inverse barocaloric effects in ferroelectric BaTiO<inf>3</inf> ceramics

    Get PDF
    We use calorimetry to identify pressure-driven isothermal entropy changes in ceramic samples of the prototypical ferroelectric BaTiO3. Near the structural phase transitions at ∼400 K (cubic-tetragonal) and ∼280 K (tetragonal-orthorhombic), the inverse barocaloric response differs in sign and magnitude from the corresponding conventional electrocaloric response. The differences in sign arise due to the decrease in unit-cell volume on heating through the transitions, whereas the differences in magnitude arise due to the large volumetric thermal expansion on either side of the transitions.European Research Council (Starting Grant ID: 680032), Engineering and Physical Sciences Research Council (Grant ID: EP/M003752/1), CICyT (Spain) (Project Nos. MAT2013-40590-P and FIS2014-54734-P), DGU (Catalonia) (Project No. 2014SGR00581), SUR (DEC Catalonia), AGAUR, FNR Luxembourg through COFERMAT project, Royal SocietyThis is the final version of the article. It first appeared from American Institute of Physics Publishing via http://dx.doi.org/10.1063/1.496159
    corecore